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Chapter One

Preliminaries

Math is a formal language useful in clarifying and exploring connections between
concepts. Like any language, it has a syntax that must be understood before
its meaning can be parsed. We discuss the building blocks of this syntax in this
chapter. The first is the variables that translate concepts into mathematics, and
we begin here. Next we cover groupings of these variables into sets, and then
operators on both variables and sets. Most data in political science are ordered,
and relations, the topic of our fourth section, provide this ordering. In the fifth
section we discuss the level of measurement of variables, which will aid us in
conceptual precision. In the sixth section we offer an array of notation that
will prove useful throughout the book; the reader may want to bookmark this
section for easy return. Finally, the seventh section discusses methods of proof,
through which we learn new things about our language of mathematics. This
section is the most difficult, is useful primarily to those doing formal theory or
devising new methods in statistics, and can be put aside for later reading or
skipped entirely.

1.1 VARIABLES AND CONSTANTS

Political scientists are interested in concepts such as participation, voting, democ-
racy, party discipline, alliance commitment, war, etc. If scholars are to com-
municate meaningfully, they must be able to understand what one another is
arguing. In other words, they must be specific about their theories and their
empirical evaluation of the hypotheses implied by their theories.

A theory is a set of statements that involve concepts. The statements com-
prise assumptions, propositions, corollaries, and hypotheses. Typically, assump-
tions are asserted, propositions and corollaries are deduced from these assump-
tions, and hypotheses are derived from these deductions and then empirically
challenged.1 Concepts are inventions that human beings create to help them
understand the world. They can generally take different values: high or low,
present or absent, none or few or many, etc.

Throughout the book we use the term “concept,” not “variable,” when dis-
cussing theory. Theories (and the hypotheses they imply) concern relationships
among abstract concepts. Variables are the indicators we develop to measure

1Of course, assumptions and the solution concepts from which deductions are made may
be empirically challenged as well, but this practice is rarer in the discipline.
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our concepts. Current practice in political science does not always honor this
distinction, but it can be helpful, particularly when first developing theory, to
speak of concepts when referring to theories and hypotheses, and reserve the
term variables for discussion of indicators or measures.

We assign variables and constants to concepts so that we may use them in
formal mathematical expressions. Both variables and constants are frequently
represented by an upper- or lowercase letter. Y or y is often used to represent
a concept that one wishes to explain, and X or x is often used to represent a
concept that causes Y to take different values (i.e., vary). The letter one chooses
to represent a concept is arbitrary—one could choose m or z or h, etc. There are
some conventions, such as the one about x and y, but there are no hard-and-fast
rules here.

Variables and constants can be anything one believes to be important to
one’s theory. For example, y could represent voter turnout and x the level of
education. They differ only in the degree to which they vary across some set
of cases. For example, students of electoral politics are interested in the gender
gap in participation and/or party identification. Gender is a variable in the US
electorate because its value varies across individuals who are typically identified
as male or female.2 In a study of voting patterns among US Supreme Court
justices between 1850 and 1950, however, gender is a constant (all the justices
were male).

More formally, a constant is a concept or a measure3 that has a single
value for a given set. We define sets shortly, but the sets that interest political
scientists tend to be the characteristics of individuals (e.g., eligible voters), col-
lectives (e.g., legislatures), and countries. So if the values for a given concept
(or its measure) do not vary across the individuals, collectives, or countries, etc.,
to which it applies, then the value is a constant. A variable is a concept or a
measure that takes different values in a given set. Coefficients on variables (i.e.,
the parameters that multiply the variables) are usually constants.

1.1.1 Why Should I Care?

Concepts and their relationships are the stuff of science, and there is nothing
more fundamental for a political scientist than an ability to be precise in concept
formation and the statement of expected relationships. Thinking abstractly in
terms of constants and variables is a first step in developing clear theories and
testable hypotheses.

2Definitions of concepts are, quite properly, contested in all areas of academia, and gender
is no exception. Though it is not a debate that generates a great deal of interest among
students of participation or party identification, it will be rather easy for you to find literature
in other fields debating the value of defining gender as a binary variable.

3By measure we mean an operational indicator of a concept. For example, the concept
gender might be measured with a survey question. The survey data provide a measure of the
concept.
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Table 1.1: Common Sets

Notation Meaning

N Natural numbers
Z Integers
Q Rational numbers
R Real (rational and irrational) numbers
C Complex numbers

Subscript: N+ Positive (negative) values of the set
Superscript: Nd Dimensionality (number of dimensions)

1.2 SETS

This leads us naturally into a discussion of sets. For our purposes,4 a set is just
a collection of elements. One can think of them as groups whose members have
something in common that is important to the person who has grouped them
together. The most common sets we utilize are those that contain all possible
values of a variable. You undoubtedly have seen these types of sets before, as
all numbers belong to them. For example, the counting numbers (0, 1, 2, . . .,
where . . . signifies that this progression goes on indefinitely) belong to the set
of natural numbers.5 The set of all natural numbers is denoted N, and any
variable n that is a natural number must come from this set. If we add negative
numbers to the set of natural numbers, i.e., . . . ,−3,−2,−1, then we get the set
of all integers, denoted Z. All numbers that can be expressed as a ratio of two
integers are called rational numbers, and the set of these is denoted Q. This set
is larger than the set of integers (though both are infinite!) but is still missing
some important irrational numbers such as π and e. The set of all rational and
irrational numbers together is known as the real numbers and is denoted R.6

Political scientists are interested in general relationships among concepts.
Sets prove fundamental to this in two ways. We have already discussed the
association between concepts and variables. As the values of each variable, and
so of each concept, are drawn from a set, each such set demarcates the range
of possible values a variable can take. Some variables in political science have
ranges of values equal to all possible numbers of a particular type, typically
either integers, for a variable such as net migration, or real numbers, for a

4These purposes, you will recall, are to build intuition rather than to be exact. We play
somewhat loosely with ordered sets in what follows, and ignore things like Russell’s paradox.

5Some define the natural numbers without the zero. We are not precise enough in this
book to make this distinction important.

6You may have occasion to use complex numbers, denoted C. These have two components,
a real and an imaginary part, and can be written a+ bi, where a and b are both real numbers
and i =

√
−1. These are beyond the scope of this book, though amply covered by classes in

complex analysis.
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variable such as GDP. More typically, variables draw their values from some
subset of possible numbers, and we say the variable x is an element of a subset of
R. For example, population is typically an element of Z+, the set of all positive
integers, which is a subset of all integers. (A + subscript typically signifies
positive numbers, and a − negative.) The size and qualities of the subset can
be informative. We saw this earlier for the gender variable: depending on the
empirical setting, the sets of all possible values were either {Male,Female} or
{Male}.7 The type of set from which a variable’s values are drawn can also
guide our theorizing. Researchers who develop a formal model, game theoretic
or otherwise, must explicitly note the range of their variables, and we can use
set notation to describe whether they are discrete or continuous variables, for
example. A variable is discrete if each one of its possible values can be associated
with a single integer. We might assign a 1 for a female and 2 for male, for
instance. Continuous variables are those whose values cannot each be assigned
a single integer.8 We typically assume that continuous variables are drawn from
a subset of the real numbers, though this is not necessary.

A solution set is the set of all solutions to some equation, and may be discrete
or continuous. For example, the set of solutions to the equation x2− 5x+ 6 = 0
is {2, 3}, a discrete set. We term a sample space a set that contains all of the
values that a variable can take in the context of statistical inference. When
discussing individuals’ actions in game theory, we instead use the term strategy
space for the same concept. For example, if a player in a one-shot game9 can
either (C)ooperate with a partner for some joint goal or (D)efect to achieve
personal goals, then the strategy space for that player is {C,D}. This will make
sense in context, as you study game theory.

Note that each of these is termed a space rather than a set. This is not a
typo; spaces are usually sets with some structure. For our purposes the most
common structure we will encounter is a metric—a measure of distance between
the elements of the set. Sets like Z and R have natural metrics. These examples
of sets form one-dimensional spaces: the elements in them differ along a single
axis. Sets may also contain multidimensional elements. For example, a set
might contain a number of points in three-dimensional space. In this case, each
element can be written (x, y, z), and the set from which these elements are drawn
is written R3. More generally, the superscript indicates the dimensionality of
the space. We will frequently use the d-dimensional space Rd in this book.
When d = 3, this is called Euclidean space. Another common multidimensional
element is an ordered pair, written (a, b). Unlike elements of R3, in which each

7As explained below, curly brackets indicate that the set is discrete. Continuous sets are
demarcated by parentheses and square brackets.

8Formally, a discrete variable draws values from a countable set, while a continuous variable
draws from an uncountable set. We define countability shortly.

9A one-shot game is one that is played only once, rather than repeatedly. You will en-
counter unfamiliar terms in the reading you do in graduate school. It is important to get in
the habit of referencing a good dictionary (online or printed) and looking up terms. A search
on a site like Google is often a useful way to find definitions of terms that are not found in
dictionaries.
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of x, y, and z is a real number, each member of an ordered pair may be quite
different. For example, an ordered pair might be (orange, lunch), indicating that
one often eats an orange at lunch. Ordered pairs, or more generally ordered n-
tuples, which are ordered pairs with n elements, are often formed via Cartesian
products. We describe these in the next section, but they function along the
lines of “take one element from the set of all fruit and connect it to the set of
all meals.”

Political scientists also think about sets informally (i.e., nonmathematically)
on a regular basis. We may take as an example the article by Sniderman,
Hagendoorn, and Prior (2004). The authors were interested in the source of the
majority public’s opposition to immigrant minorities and studied survey data to
evaluate several hypotheses. The objects they studied were individual people,
and each variable over which they collected data can be represented as a set. For
example, they developed measures of people’s perceptions of threat with respect
to “individual safety,” “individual economic well-being,” “collective safety,” and
“collective economic well-being.” They surveyed 2,007 people, and thus had four
sets, each of which contained 2,007 elements: each individual’s value for each
measure.10 In this formulation sets contain not the possible values a variable
might take, but rather the realized values that many variables do take, where
each variable is one person’s perception of one threat. Thus, sets here provide
us with a formal way to think about membership in categories or groups.

Given the importance of both ways of thinking about sets, we will take some
time now to discuss their properties. A set can be finite or infinite, countable
or uncountable, bounded or unbounded. All these terms mean what we would
expect them to mean. The number of elements in a finite set is finite; that
is, there are only so many elements in the set, and no more. In contrast, there
is no limit to the number of elements in an infinite set. For example, the set
Z is infinite, but the subset containing all integers from one to ten is finite.
A countable set is one whose elements can be counted, i.e., each one can be
associated with a natural number (or an integer). An uncountable set does not
have this property. Both Z and the set of numbers from one to ten are countable,
whereas the set of all real numbers between zero and one is not. A bounded
set has finite size (but may have infinite elements), while an unbounded set
does not. Intuitively, a bounded set can be encased in some finite shape (usually
a ball), whereas an unbounded set cannot. We say a set has a lower bound if
there is a number, u, such that every element in the set is no smaller than it,
and an upper bound if there is a number, v, such that every element in the
set is no bigger than it. These bounds need not be in the set themselves, and
there may be many of them. The greatest lower bound is the largest such lower
bound, and the least upper bound is the smallest such upper bound.

Sets contain elements, so we need some way to indicate that a given element

10One could also view this as four sets of ordered pairs, with each pair containing a variable
name and a person’s perceptions, or one set of ordered 5-tuples, each with a person’s name
and her responses to each question, in order.
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is a member of a particular set. A “funky E” serves this purpose: x ∈ A states
that “x is an element of the set A” or “x is in A.” You will find this symbol used
when the author restricts the values of a variable to a specific range: x ∈ {1, 2, 3}
or x ∈ [0, 1]. This means that x can take the value 1, 2, or 3 or x can be any
real number from 0 to 1, inclusive. It is also convenient to use this notation
to identify the range of, say, a dichotomous dependent variable in a statistical
analysis: y ∈ {0, 1}. This means that y either can take a value of 0 or a value
of 1. So the “funky E” is an important symbol with which to become familiar.
Conversely, when something is not in a set, we use the symbol /∈, as in x /∈ A.
This means that, for the examples in the previous paragraph, x does not take
the values 1, 2, or 3 or is not between 0 and 1. As you may have guessed from
our usage, curly brackets like {} are used to denote discrete sets, e.g., {A,B,C}.
Continuous sets use square brackets or parentheses depending on whether they
are closed or open (terms we define in Chapter 4), e.g., [0, 1] or (0, 1), which are
the sets of all real numbers between 0 and 1, inclusive and exclusive, respectively.

Much as sets contain elements, they also can contain, and be contained by,
other sets. The expression A ⊂ B (read “A is a proper subset of B”) implies
that set B contains all the elements in A, plus at least one more. More formally,
A ⊂ B if all x that are elements in A are also elements in B (i.e., if x ∈ A,
then x ∈ B). A ⊆ B (read “A is a subset of B”), in contrast, allows A and
B to be the same. We say that A is a proper subset of B in the first case but
not in the second. So the set of voters is a subset of the set of eligible voters,
and is most likely a proper subset, since we rarely experience full turnout. We
also occasionally say that a set that contains another set is a superset of the
smaller one, but this terminology is less common. The cardinality of a set
is the number of elements in that set. Note that proper subsets have smaller
cardinalities than their supersets, finite sets have finite cardinalities, and infinite
sets have infinite cardinalities.

A singleton is a set with only one element and so a cardinality of one. The
power set ofA is the set of all subsets ofA, and has a cardinality of 2|A|, where |A|
is the cardinality of A. Power sets come up reasonably often in political science
by virtue of our attention to bargaining and coalition formation. When one
considers all possible coalitions or alliances, one is really considering all possible
subsets of the overall set of individuals or nations. Power sets of infinite sets are
always uncountable, but are not usually seen in political science applications.
The empty set (or null set) is the set with nothing in it and is written ∅.
The universal set is the set that contains all elements. This latter concept is
particularly common in probability.

Finally, sets can be ordered or unordered. The ordered set {a, b, c} differs
from {c, a, b}, but the unordered set {a, b, c} is the same as {c, a, b}. That is,
when sets are ordered, the order of the elements is important. Political scientists
primarily work with ordered sets. For example, all datasets are ordered sets.
Consider again the study by Sniderman et al. (2004). We sketched four of the
sets they used in their study; the order in which the elements of those sets is
maintained is critically important. That is, the first element in each set must
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refer to the first person who was surveyed, the second element must refer to
the second person, and the 1,232nd element must refer to the 1,232nd person
surveyed, etc. All data analyses use ordered sets. Similarly, all equilibrium
strategy sets in game theory are ordered according to player. However, this
does not mean all sets used in political science are ordered. For example, the
set of all strategies one might play may or may not be ordered.

1.2.1 Why Should I Care?

Sets are useful to political scientists for two reasons: (1) one needs to under-
stand sets before one can understand relations and functions (covered in this
chapter and Chapter 3), and (2) sets are used widely in formal theory and in the
presentation of some areas of statistics (e.g., probability theory is often devel-
oped using set theory). They provide us with a more specific method for doing
the type of categorization that political scientists are always doing. They also
provide us with a conceptual tool that is useful for developing other important
ideas. So a basic familiarity with sets is important for further study.

For example, game theory is concerned with determining what two or more
actors should choose to do, given their goals (expressed via their utility) and
their beliefs about the likelihood of different outcomes given the choices they
might make and their beliefs about the expected behavior of the other actor(s).
Sets play a central role in game theory. The choices available to each actor form
a set. The best responses of an actor to another actor’s behavior form a set. All
possible states of the world form a set. And so on.

Those of you who are unfamiliar with game theory will find this brief dis-
cussion less than illuminating, but do not be concerned. Our point is not to
explain sets of actions, best response sets, or information sets—each is covered
in game theory courses and texts—but rather to underscore why it is important
to have a functional grasp of elementary set theory if one wants to study formal
models. Finally, we note that Riker’s (1962) celebrated game theoretic model of
political coalition formation makes extensive use of set theory to develop what
he calls the size principle (see Appendix I, pp. 247–78, of his book). That is, of
course, but one of scores of examples we might have selected.11

1.3 OPERATORS

We now have formalizations of concepts (variables) and ways to order and group
these variables (sets), but as yet nothing to do with them. Operators, the topic
of this section, are active mathematical constructs that, as their name implies,
operate on sets and elements of sets. Some operators on variables have been
familiar since early childhood: addition (+), subtraction (−), multiplication
(∗ or × or · or just placing two variables adjacent to each other as in xy),

11Readers interested in surveys of formal models in political science that are targeted at
students might find Shepsle and Bonchek (1997) and Gelbach (2013) useful.
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and division (÷ or /). We assume you know how to perform these operations.
Exponentiation, or raising x to the power a (xa), is likely also familiar, as is
taking an nth root ( n

√
x), and perhaps finding a factorial (!) as well.

Other useful basic operators include summation (
∑
i xi), which dictates that

all the xi indexed by i should be added, and product (
∏
i xi), which dictates

that all the xi be multiplied. These operators are common in empirical work,
where each i corresponds to a data point (or observation). Here are a couple of
examples:

3∑
i=1

xi = x1 + x2 + x3,

and
3∏
i=1

xi = x1 × x2 × x3.

Because they are just shorthand ways of writing multiple sums or products,
each of these operators obeys all the rules of addition and multiplication that
we lay out in the next chapter. So, for example,

∑n
i=1 x

2
i does not generally equal

(
∑n
i=1 xi)

2
for the same reason that (22+32) = 13 does not equal (2+3)2 = 25.12

Other operators and their properties will be introduced as needed throughout
the book. We present a collection of notation below in section 1.6 of this chapter.

You may be less familiar with operators on sets, though they are no less
fundamental. We consider six here: differences, complements, intersections,
unions, partitions, and Cartesian products. The difference between two sets
A and B, denoted A\B (read “A difference B”), is the set containing all the
elements of A that are not also in B: x ∈ A\B if x ∈ A but x /∈ B. This set
comes up a great deal in game theory when one is trying to exclude individual
players or strategies from consideration. The complement of a set, denoted
A′ or Ac, is the set that contains the elements that are not contained in A:
x ∈ Ac if x is not an element of A.13 Continuing the example from above, the
complement of the set of registered voters is the set of all people who are not
registered voters.

Venn diagrams can be used to depict set relationships. Figure 1.1 illustrates
the concepts of set difference and set complement. The shaded part of the left
diagram is the set Registered Voters \ Registered Democrats, which is read
“Registered Voters difference Registered Democrats.” Or, in other words, all
registered voters who are not registered Democrats. The shaded part of the
right diagram illustrates the set Registered Votersc, which is “the complement

12Summations and products can also be repeated; this is known as a double (or triple,
etc.) summation or product. If xij is indexed by i and j, then we could write

∑
i

∑
j xij

or
∏
i

∏
j xij . Multiple summations may be useful, for example, when employing discrete

distributions in more than one dimension, or when considering more than one random variable
in game theory.

13One can also think of the complement of a set A as the difference between the universal
set and A.
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of Registered Voters.” Or, in other words, people who are not registered voters,
since the universal set in this case is the set of All People. Both diagrams
illustrate the concept of a subset: the set Registered Voters is a (proper) subset
of the set All People, and the set Registered Democrats is a (proper) subset
of the set Registered Voters. And both diagrams illustrate another concept:
the sets Registered Voters and Registered Votersc are collectively exhaustive, in
that together they constitute the set All People, which is the universal set in
this case. In general, a group of sets is collectively exhaustive if together the
sets constitute the universal set.14

Figure 1.1: Set Difference and Complement

The intersection of two sets A and B, denoted A∩B (read “A intersection
B”), is the set of elements common to both sets. In other words, x ∈ A ∩ B if
x ∈ A and x ∈ B. Thus, if set A consists of elected Democrats in the state of
Florida and set B consists of legislators in the Florida House of Representatives,
then the intersection of A and B is the set containing all Democratic House
members in Florida.

The union of two sets is written A∪B (read “A union B”) and is the set of
all elements contained in either set. In other words, x ∈ A∪B if x ∈ A or x ∈ B.
Note that any x in both sets is also in their union. Continuing the example from
above, the union of A and B is the set composed of all elected Democrats in
Florida and all House members in Florida. Figure 1.2 shows the intersection of
the sets House Members and Elected Democrats in the shaded part on the left,
and their union in the shaded part on the right. The diagram on the left also
illustrates the concept of mutually exclusive sets. Mutually exclusive sets are
sets with an intersection equal to the empty set, i.e., sets with no elements in
their intersection. In the diagram on the left, the two unshaded portions of the
sets House Members and Elected Democrats are mutually exclusive sets. In fact,
any two sets are mutually exclusive once their intersection has been removed,
since they then must have an intersection that is empty.

A partition is a bit more complex: it is the collection of subsets whose union
forms the set. The more elements a set has, the greater the number of partitions

14Strictly speaking, their union must equal the universal set. We discuss unions next.
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Figure 1.2: Set Intersection and Union

one can create. Let’s consider the following example, the set of candidates for
the 2004 US presidential election who received national press coverage:15 A =
{Bush,Kerry,Nader}. We can partition A into three subsets: {Bush}, {Kerry},
{Nader}; or we can partition it into two subsets: {Bush,Nader}, {Kerry}; or
{Kerry,Nader}, {Bush}; or {Bush,Kerry}, {Nader}. Finally, the set itself is a
partition: {Bush,Kerry,Nader}.

A Cartesian product is more complex still. Consider two sets A and B, and
let a ∈ A and b ∈ B. Then the Cartesian product A × B is the set consisting
of all possible ordered pairs (a, b), where a ∈ A and b ∈ B. For example, if
A = {Female, Male} and B = {Income over $50k, Income under $50k}, then
the Cartesian product is the set of cardinality four consisting of all possible
ordered pairs: A × B = {(Female, Income over $50k), (Female, Income under
$50k), (Male, Income over $50k), (Male, Income under $50k)}. Note that the
type of element (ordered pairs) in the product is different from the elements
of the constituent sets. Cartesian products are commonly used to form larger
spaces from smaller constituents, and appear commonly in both statistics and
game theory. We can extend the concept of ordered pairs to ordered n-tuples
in this manner, and each element in the n-tuple represents a dimension. So x
is one-dimensional, (x, y) is two-dimensional, (x, y, z) is three-dimensional, and
so on. Common examples of such usage would be R3 = R × R × R, which is
three-dimensional space, and S = S1 × S2 × . . .× Sn, which is a strategy space
formed from the individual strategy spaces of each of the n players in a game.

1.3.1 Why Should I Care?

Operators on variables are essential; without them we could not even add two
numbers. Operators on sets are equally essential, as they allow us to manipulate
sets and form spaces that better capture our theories, including complex inter-

15In August 2004 Project Vote Smart listed over ninety candidates for president of the
United States, but working with the full set would be unwieldy, so we restrict attention to
the subset of candidates who received national press coverage (http://www.vote-smart.org/
election_president_party.php?party_name=All).

© Copyright, Princeton University Press. No part of this book may be 
distributed, posted, or reproduced in any form by digital or mechanical 
means without prior written permission of the publisher. 



PRELIMINARIES

MooSieBookPUP June 5, 2013 6x9

13

actions. They are also necessary for properly specifying functions of all sorts,
as we shall see in Chapter 3.

1.4 RELATIONS

Now we have variables, conceptually informed groups of variables, and ways to
manipulate them via operators, but we still lack ways to compare concepts and
discern relationships between them. This is where relations enter. A mathemat-
ical relation allows one to compare constants, variables, or expressions of these
(or, if you prefer, concepts). Binary relations (i.e., the relation between two
constants/variables/expressions or concepts) are easiest to consider, so we will
restrict the discussion to the two variable case, but the idea can be generalized
to an n-ary relation. Similarly, we can define orders on sets, but these admit
many possibilities and are less commonly observed in political science, so we
will eschew this topic as well.

A binary relation can be represented as an ordered pair. So, if a ∈ A is
greater than b ∈ A, we can write the relation as (a, b). When constants or
variables are drawn from the integers or real numbers, though, we have more
familiar notation. Integers and real numbers have natural associated orders:
three is greater than two is greater than one, and so on. When one is certain
of the value of a concept, as one is with a constant, then we can write 3 > 2,
1 < 4, and 2.5 = 2.5. The symbols >, <, and = form the familiar relations of
arithmetic. When one is less sure of the values of a concept, as one is with a
variable, then we also have the relations ≥ and ≤, as in x ≥ z. Algebra, reviewed
in the next chapter, deals with the manipulation of these sorts of relations.

The concept of relations is more general than these orders, however. A rela-
tion exists between two sets (or concepts) when knowing one element provides
information about the other element. So, for example, in networks the relation
could be “linked,” while in game theory it might be “like as well as.” We will
explore this latter idea more in Chapter 3. While relations can be specified
quite generally,16 typically we will only be concerned with a few types of rela-
tion. Inequalities are one, and preference relations, discussed in Chapter 3, are
another. The most common relation we’ll use, though, is a function, which is
the topic of Chapter 3. In this context we want to know the mapping between
sets A and B. In other words, we want to know how the function transforms
an element of A into an element of B. In this case we call A the domain and
B the range. Relations (and so functions) can have various properties, some of
which we discuss in Chapter 3.

16A relation is a mathematical object that takes as input two sets A and B (called its
domain in this context) and returns a subset of A×B (called its graph in this context).
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1.4.1 Why Should I Care?

Relations are important because they help us describe the mapping of values
across concepts. Relations such as “greater than” and “equal to” are critical to
descriptive claims about the world as well as to making theoretical claims. Fur-
ther, functions—a specific type of relation—are very common in both theoretical
and empirical work in political science.

1.5 LEVEL OF MEASUREMENT

We now have most of the building blocks we need to describe relationships
between concepts. These in turn allow us to distinguish among different levels
of measurement: nominal, ordinal, interval, and ratio. Note that though
levels of measurement tend to be associated with variables, they are equally
applicable and important to conceptualization.17 We briefly discuss each level
of measurement in turn.

1.5.1 Differences of Kind

In some theories all we require of our concepts is that they distinguish one type
from another. That is, some concepts are about differences of kind, but not
differences of degree. Concepts that identify different types but do not order
them on any scale are nominal, and they require only nominal level measurement
of their indicators.18

Nominal level measurement does not establish mathematical relation-
ships among the values. In other words, it does not make sense to assert that a
case with a nominal value of 3 is greater than one with a nominal value of 1, or
that two cases with a nominal value of 2 are equal. The symbols <, ≤, =, ≥,
and > have no meaning for variables measured at the nominal level. Gender is
a good example of a nominal level variable. When entering data for a measure
of gender into a computer a researcher might assign the values of 0 and 1 (or
1 and 2) to female and male, respectively. But she might also have assigned
the values −64 and 3, 241. Or she might have assigned the values 1 and 0 (or
2 and 1) to female and male, respectively. The point is that higher values do
not convey any meaning: the numerical values are placeholders that indicate a
difference, but the numerical values do not tell us anything meaningful.

1.5.2 Differences of Degree

At other times we are interested in differences of degree. Whether one case has
more, is stronger, etc., is important to us as we define concepts and then think

17Students interested in an extended discussion will find Cohen and Nagel (1934, pp. 223–
44) useful.

18The four levels of measurement—nominal, ordinal, interval, and ratio—were proposed by
Stevens (1946).
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about ways to measure those concepts. In such cases, nominal level concepts
and measures are inadequate for they do not imply mathematical relationships
among the values.

Ordinal level measurement, on the other hand, does imply mathematical
relationships among the values. More specifically, the symbols <, ≤, =, ≥, and
> have meaning for ordinal level concepts (variables). However, the distance
between any two values does not measure a constant quantity across the values
the variable might take. For example, a voting scholar might be interested in
people’s self-placement on an ideological scale. He might put together a survey
that includes a question asking people to mark themselves as far left, moderate
left, middle of the road, moderate right, far right. Such a concept makes “greater
than,” “less than,” and “equal to” distinctions. For example, we can say that
moderate left is further to the left on the scale than middle of the road. And
when we assign numerical values we do not have the same freedom as with a
nominal measure. That is, once we have assigned two values, we are constrained
on others. For example, if we assign “middle of the road” the value 3 and “far
left” the value 1, then we must assign “moderate left” a value greater than 1
and less than 3. If this were a nominal level variable, then we would not be so
constrained and could assign any value we wish. But ordinal variables must use
numerical values that retain the order of the concept’s values because the order
matters in the sense that it conveys meaning. So concepts with an ordinal level
of measurement have ordered values that indicate “more than” and “less than.”

The next level of measurement is interval. This requires that the distance
between values be constant over the range of values. This property is important
because it makes addition and subtraction meaningful. One cannot meaningfully
add or subtract variables with nominal or ordinal values because the operation
does not make sense. To see that this is so, consider that we can assign any
values to a binary nominal variable: 0, 1; 1, 2; or −64 and 3, 241. We cannot
meaningfully add or subtract the values of such a variable because the values
do not have meaning as numerical values. Ordinal measures, on the other hand,
have meaning up to “greater than” and “less than” operations, but they also
cannot be added or subtracted. If one considers the example above, we might
assign the numerical values 1, 2, 3, 4, and 5 to the ideology scale, or we might
assign the numerical values −3, 2, 7, 44, and 1,324. Any set of numerical values
that retains the order of the concept’s values is valid. The distances in the
first numerical value set are constant (they are each one unit apart), but the
distances in the second set vary. As such, and because both sets of values are
valid, the addition and subtraction of ordinal measures do not have meaning.

Interval level measures, on the other hand, have meaningful distances
between values: the intervals between numbers are constant across the range
of values. Put differently, a change of ±x on the scale is the same distance
regardless of where one is on the scale.

Interval levels measures may be discrete or continuous. Discrete variables
with interval level measurement are integers (or natural numbers). For example,
a common survey item is the feeling thermometer, which asks respondents to
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identify the strength of their feelings toward a politician on a scale of 0 to
100, where 0 represents extremely cold and 100 represents extremely hot (e.g.,
Cain, 1978; Abramowitz, 1980). Most researchers submit that the respondent
recognizes that a shift of +10 points is the same anywhere on the scale.19 That
is, the distance from 0 to 5 is equivalent to the distance from 26 to 31, from 47
to 52, from 83 to 88, etc. To the extent that this is so, the measure is interval.
One can meaningfully add and subtract interval level measures.

Ratio level variables are interval level variables that have a meaningful
zero value. The feeling thermometer variable has a zero value, but it does
not represent the absence of feeling. Instead, it represents a very strong feeling:
intense dislike. So zero is not a meaningful point on the scale. As such, while we
can conduct meaningful addition and subtraction operations with such variables,
we cannot conduct meaningful multiplication and division operations.

The label “ratio level” comes from the fact that the same ratio at two points
on the scale conveys the same meaning. This is not terribly intuitive, so let us
explain. On an interval level scale any distance x between two points has the
same meaning, regardless of where we are on the scale. Ratio level measurement
also has this property, but it has a constant ratio property that interval level
measurement lacks: the ratio of two points on the scale conveys the same mean-
ing regardless of where one is on the scale. A good example of a ratio level scale
is a public budget. Imagine that a municipal government spends four times as
much on public safety as it does on public health. This is a ratio of 4:1.20 Thus,
if the city spends $4.8 million on public safety, it must spend $1.2 million on
public health. Similarly, if it spends $2 million on public safety, it must spend
$0.5 million on public health. Ratios can only convey meaning (i.e., measure a
constant ratio) when the scale over which they are measured has a 0 value that
indicates the absence (i.e., none of) whatever is being measured.

To return to the feeling thermometer example, if the value 0 represents intense
negative affect (i.e., dislike), 50 indicates an absence of affect (i.e., indifference),
and 100 represents intense positive affect, then 0 is not an absence of affect.
Thus, it is an interval level scale, not a ratio level scale, and we cannot conclude
that the first member of two pairs of respondents with scores of 20 and 10, and
50 and 25, respectively, each have twice as much affect for a candidate as the
second member of each pair. However, we could rescale the feeling thermometer
to make it centered on zero, perhaps assigning the value of −50 to intense
negative affect, 0 to the absence of affect (or indifference), and 50 to intense
positive affect. Doing so would transform the level of measurement from interval
to ratio.21

19Note that the respondents’ (implicit) beliefs about the scale of the item are important in
survey research.

20We discuss ratios in more detail in the first section of Chapter 2. You may want to skip
ahead to there if you are unfamiliar with ratios.

21You may be thinking that this is a trivial transformation that is not consequential, but
this is not the case. To see why, try the following. Arbitrarily select a ratio—perhaps 3:1—and
select two pairs of points on the transformed feeling thermometer (the one with the proper
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There are lots of examples of discrete ratio level variables in political science.
Political scientists are often interested in the number of events that occur, and an
event count has a meaningful constant distance between values and a meaningful
zero point. Thus, they are ratio variables. Examples of event counts that
have been used in political science include the number of seats a party holds
in parliament, the number of vetoes issued by an executive, the number of
unanimous decisions by a court, and the number of wars in which a country has
participated.

Thus far we have restricted our attention to discrete variables. Continuous
variables have an interval or ratio level of measurement, depending on whether
the value 0 represents the absence of the concept. The vast majority of (empiri-
cal) concepts that political scientists have either created or borrowed from other
disciplines are discrete, but some examples of continuous measures of interest
to political scientists are income and GDP.22

You have likely noticed that each level of measurement subsumes the levels
below it. That is, ordinal level measurement is also nominal, and an inter-
val measure has ordinal and nominal properties. This suggests that whenever
we have a concept at a high level of measurement we can reconceptualize and
remeasure it at a lower level of measurement should we have cause to do so.

Some people mistakenly view the hierarchy of the levels of measurement as
a means to judge the heuristic value of concepts. This is an error. Concepts
can be evaluated on their clarity (vague concepts have little heuristic value),
and one can make normative judgments about concepts (e.g., freedom, peace,
order), but all sufficiently clear concepts are merely inputs to specific theories,
and theories, not their concepts, should be judged. A proper discussion of this
issue is beyond the scope of this book, but it is important to recognize that
a nominal conceptualization may yield insights that a ratio conceptualization
would miss and vice versa. Put differently, it would be an error to judge the
levels of measurement as an ordinal scale with respect to their value to causal
theory: it is nominal.

1.5.3 Why Should I Care?

Recognizing whether one is thinking about differences of kind (nominal) or de-
gree (ordinal, interval, or ratio) is critical. If one is thinking about differences of
degree, then how precise are those differences? Without a firm grasp on levels
of measurement one cannot be precise about one’s concepts, much less one’s
measures of one’s concepts.

ratio scale where −50 is intense dislike, 0 is indifference, and 50 is strong positive affect) that
have that ratio. Now transform the scale to the actual feeling thermometer (the one with the
range from 0 to 100). Recalculate the ratios. They are different, right? The two scales do
not produce the same ratio levels, and that means that one of them preserves ratios and the
other does not. The one with the meaningful zero is the only scale that produces meaningful
ratios. For a more detailed explanation, see Stevens (1946).

22If one rounds either to dollars, thousands of dollars, etc., then the values are integers (or
natural numbers) and the measure is discrete.
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1.6 NOTATION

Here we list, and in some cases briefly describe, common notation. This section
is one you will likely refer to from time to time, but not everything might be clear
now. Also, as a reference section it is heavier on the math and lighter on the
intuition. It is important to read it once now, but if you find yourself unclear on
some notation later, please refer back to this section. To make reference easier,
we begin with the summary Table 1.2.

Operators take many forms, and are commonly used. We have already
discussed some: +, −, ×, /, xn, n

√
x,
∑

,
∏

, !. Some of these have multiple
ways to represent them, others mean multiple things depending on context. For
example, there are several ways to represent multiplication: a×b×c = a∗b∗c =
a · b · c = abc. Of course, as we have seen, × can also mean a Cartesian product
when applied to sets. Both / and ÷ mean divide; the mod operator, written
8 mod 3, means divide the first number by the second, and report the remainder:
8 mod 3 = 2.

One can also use the product operator,
∏

, to represent the product of a, b,
and c:

∏c
a.

One reads that as the product of a through c.

More typically, the product operator is used by indexing a variable (this is

accomplished by adding a subscript: xi) and writing:
∏l
i=k xi.

One reads that as the product of xi over the range from i = k through
i = l.

When the product operator is used in an equation that is set apart from the
text, it looks like this:

l∏
i=k

xi = xk × . . .× xl.

The “. . .” here signals the reader to assume all interim values are included in
the product. When used at the end of a list, e.g., 1, 2, 3, . . ., “. . .” signifies that
the list (or product or sum) goes on indefinitely. In these cases you may also see
∞ as an end to the sequence instead, e.g., 1, 2, 3, . . . ,∞; ∞ is the symbol for
infinity. In other words, . . . means continue the progression until told to stop.

The summation operator,
∑

, can be used to represent the addition of several
numbers. For example, if we want to add together all members of a set indexed
by i, then we can write:

∑
i. One reads that as the sum over i. You will also see

summation represented over a range of values, say from value k through value
l:
∑l
i=k xi.

One reads that as the sum of xi over the range from i = k through
i = l.
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Table 1.2: Summary of Symbols and Notation

Symbol Meaning
+ Addition
− Subtraction

∗ or × or · Multiplication
/ or ÷ Division
± Plus or minus
xn Exponentiation (“to the nth power”)
n
√
x Radical or nth root

! Factorial
∞ Infinity∑l
i=k xi Sum of xi from index i = k to i = l∏l
i=k xi Product of xi from index i = k to i = l
. . . Continued progression
d
dx Total derivative with respect to x
∂
∂x Partial derivative with respect to x∫
dx Integral over x
∪ Set union
∩ Set intersection
× Cartesian product of sets
\ Set difference
Ac Complement of set A
∅ Empty (or null) set
∈ Set membership
/∈ Not member of set

| or : or 3 Such that
⊂ Proper subset
⊆ Subset
< Less than
≤ Less than or equal to
= Equal to
> Greater than
≥ Greater than or equal to
6= Not equal to
≡ Equivalent to or Defined as

f() or f(·) Function
{ } Delimiter for discrete set
( ) Delimiter for open set
[ ] Delimiter for closed set
∀ For all (or for every or for each)
∃ There exists
⇒ Implies
⇔ If and only if

¬C or ∼ C Negation (not C)
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Set apart from the text in an equation, the summation operator looks like this:

l∑
i=k

xi = xk + . . .+ xl.

The exponential operator, xn (read “x to the nth power,” or “x-squared”
when n = 2 and “x-cubed” when n = 3), represents the power to which we raise
the variable, x. The root operator, n

√
x (read “the nth root of x,” or “the square

root of x” when n = 2 or “the cube root of x” when n = 3), represents the root
of x.

Factorial notation is used to indicate the product of a specific sequence of
numbers. Thus, n! = n×(n−1)×(n−2) . . .×2×1. So 5! = 5×4×3×2×1 = 120,
and 10! = 10× 9× . . . 3× 2× 1 = 3, 628, 800. This notation is especially useful
for calculating probabilities.

You may not be familiar with some of the operators used in calculus. The
derivative of x with respect to t is represented by the operator dx

dt . The operator
∂ indicates the partial derivative, and

∫
indicates the integral. These will be

the focus of Parts II and V of this book.
Though it’s not an operator, one more symbol is useful to mention here: ±.

Read as “plus or minus,” this symbol implies that one cannot be sure of the
sign of what comes next. For example,

√
4 = ±2, because squaring either 2 or

−2 would produce 4.
Sets, as we have seen, have a good deal of associated notation. There are the

set operators ∩, ∪, ×, and \, plus the complement of A (Ac or A′). There are
also the empty set ∅, set membership ∈, set nonmembership /∈, proper subset ⊂,
and subset ⊆. To these we add | , : , or 3, which are each read as “such that.”
These are typically used in the definition of a set. For example, we define the
set A = {x ∈ B|x ≤ 3}, read as “the set of all x in B such that x is less than or
equal to 3.” In other words, the | indicates the condition that defines the set.
It serves the same purpose in conditional probabilities (P (A|B)), as we will see
in Part III of the book. Sets also make use of delimiters, described below.

Relations include <, ≤, =, ≥, >. They also include 6=, which means “not
equal to,” and ≡, which means “exactly equivalent to” or, often, “defined as.”
Relations between variables or constants typically have a left-hand side, to the
left of the relation symbol, and a right-hand side, to the right of the relation
symbol. These are often abbreviated as LHS and RHS, respectively. Functions
are typically written as f() or f(·), both of which imply that f is a function of
one or more variables and constants. The “·” here is a placeholder for a variable
or constant; do not confuse it with its occasional use as a multiplication symbol,
which occurs only when there are things to multiply.

Delimiters are used to indicate groups. Sometimes the groups are used to
identify the order of the operations that are to be performed: (x + x2)(x − z).
One performs the operations inside the innermost parentheses first and then
moves outward. Square braces and parentheses are also used to identify closed
and open sets, respectively. The open set (x1, xn) excludes the endpoint values
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Table 1.3: Greek Letters

Upper- Lower- Upper- Lower-
case case English case case English
A α alpha N ν nu
B β beta Ξ ξ xi
Γ γ gamma O o omicron
∆ δ delta Π π pi
E ε epsilon P ρ rho
Z ζ zeta Σ σ sigma
H η eta T τ tau
Θ θ theta Υ υ upsilon
I ι iota Φ φ phi
K κ kappa X χ chi
Λ λ lambda Ψ ψ psi
M µ mu Ω ω omega

x1 and xn, whereas the closed set [x1, xn] includes the endpoint values x1 and
xn. Curly braces are used to denote set definitions, as above, or discrete sets:
{x1, x2, . . . , xn}. Parentheses are also often used for ordered pairs or n-tuples,
as we have seen; for example, (2, 3, 1). They are also often used in vectors,
which have a similar meaning. Both parentheses and square braces are used
interchangeably to indicate the boundaries of matrices. We will discuss both
vectors and matrices in Part IV of the book.

Proofs, the topic of the next section, have their own notation, which may
pop up in other sections as well. The symbol ∀ means “for all,” so ∀x ∈ A
means the associated statement applies for all x in the set A. The symbol ∃
means “there exists,” typically used in the context of ∃ some x ∈ A such that
x < 3. The symbol ⇒ is read as “implies” and is used as C ⇒ D, which means
that whenever statement C is true, D is too. One can also use the reverse,
C ⇐ D, which means that C is true if D is true. The symbol ⇔ means that
both implications are true and is read as “if and only if,” so C ⇔ D means
that C is true if D is true, and only if D is true. In other words, C and D are
equivalent statements. The symbol ¬ denotes negation, so ¬C means statement
C is not true. You will also sometimes see ∼ C used to mean C is not true.

People sometimes use Greek letters to represent variables, particularly in
formal theory; they are often used to represent constants (aka parameters) in
statistical analysis. Table 1.3 lists the Greek alphabet. If you have never en-
countered the Greek alphabet you may want to make a copy of this page, cut
out the table, and tape it to the wall where you study for this and other courses
that use math. Or just save it to your preferred portable electronic device.

1.6.1 Why Should I Care?

Notation that you cannot read is a serious stumbling block to understanding!
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1.7 PROOFS, OR HOW DO WE KNOW THIS?

As we progress through this book, we will offer up a great many pieces of
information as fact, often without explaining how we knew they were true. As
noted in the preface to this book, we do this in order to focus on intuition
rather than mathematical formalism. However, it is certainly fair to wonder—
more than fair, really—how one comes to these conclusions. The answer, as we
discuss briefly here, is that they have been proven to be true.

How does this work? Mathematics is not an empirical science; there are
no experiments, and no data except insofar as experience shapes the thought
of mathematicians. Rather, the progress of math begins with axioms and as-
sumptions, which are stated up front with clarity and taken to be true.23 One
then conjectures a proposition, which is just a statement that is thought to
be true given the assumptions made. From these assumptions, along with any
previously proved theorems, one deductively proves, or disproves, the propo-
sition. A proven proposition is often referred to as a theorem, unless it is
of little interest in and of itself and is intended to be used only as a stepping
stone, in which case it is called a lemma. A corollary is a type of proposi-
tion that follows directly from the proof of another proposition and does not
require further proof. You will see assumptions and propositions commonly in
pure and applied game theory, and lemmas, theorems, and corollaries somewhat
less commonly. Propositions, though deductively derived, are often empirically
testable given appropriate measures for the variables used in the proposition. In
other words, a proposition might state that y is increasing in x1 and decreasing
in x2. To test this empirically, one needs measures for y, x1, and x2. In some
scientific fields it is common to distinguish propositions from hypotheses, with
the former referring to statements of expected relationships among concepts and
the latter referring to expected relationships among variables. In such contexts
propositions are more general statements than hypotheses. At present, these
distinctions are not widely used among political scientists.

It is not difficult to make assumptions, though learning to specify them clearly
and to identify the implicit assumptions you may be making takes practice. Nor
is it difficult to state propositions that may be true, though similar caveats apply.
The tricky part is in proving the proposition. There is no one way to prove all
propositions, though the nature of the proposition can suggest the appropriate
alternative. We will consider a few commonly observed methods here, but this
is far from a complete accounting.

We begin by considering four statements: A,B,C,D. A statement can be
anything, e.g., A could be x < 3 or “all red marbles are in the left urn” or
“democracies are characterized primarily by elections.” Let’s assume that A
and B are assumptions. We take them to be true at the start of our proof and

23Political scientists rarely specify axioms, which tend to be more significant and wide-
ranging assumptions than what are called simply assumptions. The following discussion uses
terms as they are commonly observed in political science, which may elide mathematical
nuance.
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will not deduce them in any way from other statements. Of course, if they are
not empirically true, then our conclusions may very well be incorrect empirically,
but, as you can guess by the repeated use of the word “empirically,” this is an
empirical question and not a mathematical one. Let’s further assume that C
is an interim statement—that is, a deduced statement that is not our intended
conclusion—and that D is that conclusion. Thus our goal is to derive D from
A and B. This is the general goal of mathematical proofs.

More precisely, in this case we are seeking to show that A and B ⇒ D (A and
B imply D). This is a sufficiency statement: A and B are sufficient to produce
D. We also can call this an if statement: D is true if A and B are true. This
is not the only possible implication we could have written (implications are just
a type of mathematical statement). We could instead have stated that A and
B ⇐ D (A and B are implied by D). This is a statement of necessity: A and
B are necessary to produce D, since every time D is true, so are A and B. We
can also call this an only if statement: D is true only if A and B are. Take
a moment to think about the difference between these two ideas, as it is fairly
central to understanding theory in political science, and it is not always obvious
how different the statements are.

Ready? There is also a third common implication we could have written, a
necessary and sufficient statement: A and B ⇔ D. This is also called an if
and only if statement, as D is true if and only if A and B are true. In other
words, A and B are entirely equivalent logically to D, and one can replace one
statement with the other at will. This is one way one uses existing theorems
to help in new proofs, by replacing statements with other statements proven to
be equivalent. (One can also use if or only if propositions on their own in new
proofs.)

In addition to using existing theorems, pretty much any mathematical pro-
cedure accepted as true can be used in a proof. We’ll cover many in this book,
but the most basic of these may be the tools of formal logic, which has much
in common with set theory. Negation of a statement is much the same as the
complement of a set. For example, you cannot be both true and not true, nor
can you be both in and outside a set. You can also take the equivalent of a
union and an intersection of sets for statements; these are called disjunction
and conjunction, or, in symbols, or (∨) and and (∧), respectively. Note that
the and symbol looks like the intersection symbol. This is not accidental—and
means that both statements are true, which is like being in both sets, which
is like the intersection of the sets. Likewise, or means that at least one state-
ment is true, which is like being in either set, which is like the union between
the sets. Let’s call a compound statement anything that takes any two simpler
statements, such as A and B, and combines them with a logical operator, such
as ¬,∨, or ∧. We can therefore write the implication we’re trying to prove as
A ∧B ⇒ D.

De Morgan’s laws prove handy for manipulating both sets and logical state-
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ments.24 We’ll present these in terms of logical statements, but they are true
for sets as well after altering the notation. The best way to remember them is
that the negation of a compound statement using and or or is the compound
statement in which the and is switched for or, or vice versa, and each of the
simpler statements is negated. So, for example, ¬(A ∧ B) is (¬A) ∨ (¬B) and
¬(A ∨ B) is (¬A) ∧ (¬B). In words, if both statements aren’t true, then at
least one of them must be false. Similarly, if it’s not the case that at least one
statement is true, then both statements are false.

We can use logic to obtain several important variants of our implications
that might be useful. A negated implication just negates all the statements
that are part of the implication. So the negation of our implication becomes
¬(A∧B)⇒ ¬D, which by De Morgan’s law is (¬A)∨ (¬B)⇒ ¬D. Even when
the statement is true, the negation might not be. Having two democracies may
mean you’re at peace (for the sake of this argument), but letting at least one of
them not be a democracy does not automatically imply war.

The converse of an implication switches a necessary statement to a sufficient
one, or vice versa. Thus the converse of A and B ⇒ D is A and B ⇐ D or
D ⇒ A and B. As noted above, just because an implication is true does not
mean the converse is true—something may be necessary without being sufficient.
However, negating the converse, called taking the contrapositive, does always
yield a true statement. The contrapositive of our implication is (¬A)∨(¬B)⇐
¬D, or, as it’s more typically written, ¬D ⇒ (¬A) ∨ (¬B). If a pair (dyad) of
democracies never experiences war, then having a war (the opposite of peace)
means that at least one of the pair is not a democracy.

Okay, back to our proof. Proofs are sometimes classed into broad groups
of direct and indirect proofs. Direct proofs use deduction to string together
series of true statements, starting with the assumptions and ending with the
conclusion. In addition to the construction of a string of arguments, direct proofs
commonly observed in formal theory include proof by exhaustion, construction,
and induction. Let us see briefly how these work, starting with a general
deductive proof.

Let A be the statement that x ∈ Z is even, and B be the statement that
y ∈ Z is even, and D, which we’re trying to prove, be the statement that the
product xy is even. Well, if x and y are even (our assumptions), then they
can be written as x = 2r and y = 2s for some r, s ∈ Z. (Here we’ve used the
definition of even.) In this case, we can write xy = (2r)(2s) = 4rs, which is our
new statement C. Since 4rs = 2(2rs), xy is even (again using the definition of
even), thus proving D. Now we know that the product of any two even integers
is also even, and we could use this knowledge in further, more complex proofs.

Proof by exhaustion is similar, save that you also break up the problem into
exhaustive cases and prove that your statement is true for each case. This comes
up often in game theory as there will be different regions of the parameter space
that may behave differently and admit different solutions. (The parameter space

24See http://en.wikipedia.org/wiki/De_Morgan_laws.
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is the space, in the sense of a set with a measure, spanned by the parameters.
We will discuss this concept more in Part III of the book.)

Proof by construction is similarly straightforward, and can be useful when
trying to show something like existence: if you can construct an example of
something, then it exists.

Proof by induction is a bit different and merits its own example. It is
generally useful when you would like to prove something about a sequence (we
cover sequences in Chapter 4) or a sequence of statements. It consists of three
parts. First, one proves the base case, which in this example is the first element
in the sequence. Second, one assumes that the statement is true for some n
(the inductive hypothesis). Third, one proves that the statement is true for
n + 1 as well (the inductive step). Thus, since the base case is true and one
can always go one further in the sequence and have the statements remain
true, the entire sequence of statements is true.25 Let’s see how this works with

an example: show that
∑n
i=1 i = n(n+1)

2 . We basically need to show this is
true for each n, but since they occur in sequence, we’ll use induction rather
than exhaustion (which wouldn’t be appropriate, given that the sequence is
infinite anyway). First we try the base case, which is for n = 1. We can

check this:
∑1
i=1 i = 1 = 1(2)

2 = 1(1+1)
2 . So the base case is true. Now we

assume, somewhat counterintuitively, the statement that we’re trying to prove:∑n
i=1 i = n(n+1)

2 . Finally, we show it remains true for n + 1, so we need to

prove that
∑n+1
i=1 i = (n+1((n+1)+1)

2 , where we’ve replaced n in the right-hand
side of the statement we’re trying to prove with n + 1. The sum in the left-
hand side of this is

∑n
i=1 i + (n + 1), where we’ve just split the sum into two

pieces. The first piece equals n(n+1)
2 by step two in our proof. So now we have

n(n+1)
2 + (n + 1) = n(n+1)

2 + 2(n+1)
2 = n(n+1)+2(n+1)

2 = (n+1)(n+2)
2 . This is just

what we needed to show, so the n + 1 inductive step is true, and we’ve proved
the statement.

Indirect proofs, in contrast, tend to show that something must be true
because all other possibilities are not. Proof by counterexample and proof
by contradiction both fall into this category. Counterexamples are straight-
forward. If the statement is that A ∧B ⇒ D and A and B are both true, then
a single counterexample of ¬D is sufficient to disprove the proposition. Proof
by contradiction has a similar intent, but instead of finding a counterexample
one starts by assuming the statement one is trying to prove is actually false,
and then showing that this implies a contradiction. This proves the proposition
because if it cannot be false, then it must be true. Although it may seem coun-
terintuitive, proof by contradiction is perhaps the most common type of proof,
and is usually worth trying first. Proving the contrapositive, since it indirectly

25Though this method of proof is called mathematical induction, it’s important to note
that it is a deductive method of theory building, not an inductive one. That is, it involves
making assumptions and deducing conclusions from these, not stating conclusions derived
from a series of statements that may only be probabilistically linked to the conclusion, as in
inductive reasoning.
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also proves the statement, as they are equivalent, is sometimes also considered
an indirect proof, though it seems pretty direct to us.

1.8 EXERCISES

1.8.1 Constants and Variables and Levels of Measurement

1. Identify whether each of the following is a constant or a variable:

a) Party identification of delegates at a political convention.

b) War participation of the Great Powers.

c) Voting record of members of Congress relative to the stated position
of the president.

d) Revolutions in France, Russia, China, Iran, and Nicaragua.

e) An individual voter’s vote choice in the 1992 presidential election.

f) An individual voter’s vote choice in the 1960–1992 presidential elec-
tions.

g) Vote choice in the 1992 presidential election.

2. Identify whether each of the following is a variable or a value of a variable:

a) The Tonkin Gulf Crisis.

b) Party identification.

c) Middle income.

d) Exports as a percentage of GDP.

e) Republican.

f) Female.

g) Veto.

h) Ethnic fractionalization.

i) International crisis.

3. Identify whether each of the following indicators is measured at a nominal,
ordinal, interval, or ratio level. Note also whether each is a discrete or a
continuous measure:

a) Highest level of education as (1) some high school, (2) high school
graduate, (3) some college, (4) college graduate, (5) postgraduate.

b) Annual income.

c) State welfare expenditures, measured in millions of dollars.

d) Vote choice among Bush, Clinton, and Perot.

e) Absence or presence of a militarized interstate dispute.

f) Military personnel, measured in 1,000s of persons.

g) The number of wars in which countries have participated.
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1.8.2 Sets, Operators, and Proofs

4. As a brief illustration of one use of set theory, consider the following ques-
tion: given three parties in a legislature with a supermajority rule required
to pass a bill, what is the likely outcome of a given session? We can use set
theory and some rational choice assumptions to get a pretty good handle
on that question. Assume that no party has enough seats to pass the bill
by itself and that all three parties prefer some outcome other than the
status quo. For concreteness, let’s define two dimensions over which to
define policy: guns (i.e., defense spending) and butter (i.e., health, educa-
tion, and welfare spending). We can now create a two-dimensional space
where spending on guns is plotted on the vertical axis and spending on
butter is plotted on the horizontal axis. Take out a sheet of paper and
draw this. Let the axes range from 0% of the budget, marked where the
axes intersect, to 100% of the budget, marked as the maximum value on
each axis. Connect the two maximum values with a straight line. You now
have a triangle, and the legislature cannot go outside the triangle: the line
you just drew represents spending the entire budget on some mix of guns
and butter. Let’s assume that the legislators want to spend some money
on non-guns and non-butter, and thus both parties’ most preferred com-
bination of guns and butters is somewhere inside the budget constraint.
Pick some point inside the budget constraint and mark it as the status
quo. Now select a most preferred combination for each party and mark
each as Party 1, Party 2, and Party 3. Finally, pick a fifth point and label
it a bill. Make a conjecture on whether the bill will pass or whether the
status quo will be sustained. (For now this is just a conjecture, but we’ll
return to this in the exercises to Chapter 3, so save your answer.)

5. Let A = {1, 5, 10} and B = {1, 2, . . . , 10}.

a) Is A ⊂ B, B ⊂ A, both, or neither?

b) What is A ∪B?

c) What is A ∩B?

d) Partition B into two sets, A and everything else. Call everything else
C. What is C?

e) What is A ∪ C?

f) What is A ∩ C?

6. Write an element of the Cartesian product [0, 1]× (1, 2).

7. Prove that
√

2 is an irrational number. That is, show that it cannot be
written as the ratio of two integers, p and q.

8. Prove that the sum of any two even numbers is even, the sum of any
two odd numbers is even, and the sum of any odd number with any even
number is odd.

© Copyright, Princeton University Press. No part of this book may be 
distributed, posted, or reproduced in any form by digital or mechanical 
means without prior written permission of the publisher. 




