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C H A P T E R  6  
Chapter Goals:General Solutions and Transformations— 

One-Variable Models •	 To describe methods for 

obtaining general solu­

tions for models with one 

variable 

•	 To describe transforma­

tion methods for simplify­

ing models 

6.1 Introduction 
Chapter Concepts: 

•	 Transformation 
In Chapter 5 we focused on finding equilibria of models and determining the 

•	 Affine model 
local stability properties of these equilibria. In a small fraction of models, it is 

•	 Brute force iteration 
possible to go beyond identifying equilibria and their stability by finding the 

•	 Separation of variables
general solution of the equations: 

Definition 6.1: General Solution 
A description of the state of the system for all future points in time 

that depends only on the parameters, the initial state, and the 
amount of time that has passed. 

We have already seen an example of a general solution for a discrete-time recur­
sion equation. The recursion equation n(t � 1) � Rn(t) can be iterated by hand 
to get the general solution (4.1): 

n(t) � Rtn(0).	 (6.1) 

Any model where the variable is multiplied by the same factor each generation 
to obtain the value of the variable in the next generation has a general solution 
of this form. We will describe recipes that can be followed to find the general 
solution for any linear model with one variable (this chapter) or multiple vari­
ables (Chapter 9). Because these recipes exist, there is some hope of finding the 
general solution for any linear model (although the equations can become so 
complicated that we might get bogged down along the way). For nonlinear 
models, however, there may or may not be a general solution, and it is a bit of 
a black art to be able to massage equations in just the right way to obtain a gen­
eral solution. 

Many of the techniques in this chapter involve transformations from the 
original set of variables to another set of variables. Transformations often sim­
plify the dynamical equations. For example, in some cases, it is possible to 
“see” how to obtain a general solution only after a transformation is per­
formed. More generally, however, transformations can be used to gain more 
insight into models and to obtain approximate dynamical equations when an 
exact general solution cannot be obtained. 

A transformation rewrites 

the dynamical equations 

of a model in terms of a 

new set of variables, 

which is chosen to 

simplify the equations or 

to provide more 

biological insight than 

the original set of 

variables. 
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In section 6.2 we describe transformations in a general context. Sections 6.3 
and 6.4 then discuss how to obtain general solutions to linear and nonlinear 
models in discrete time, typically with the help of a transformation. Finally, 
sections 6.5 and 6.6 do the same for models in continuous time. Throughout, 
we focus on models with one variable, leaving the corresponding analyses for 
models with multiple variables until Chapter 9. 

6.2 Transformations 

As you get more experience analyzing models, you will come to appreciate tech­
niques that simplify the calculations and that help extract useful biological infor­
mation. One of the most powerful techniques involves transforming the 
variables of a model. To perform a transformation, we define a new set of vari­
ables in terms of the original variables in the model. We then derive “trans­
formed” dynamical equations that describe how these new variables change over 
time. For example, if we have a differential equation describing the size of a pop­
ulation, N, over time, dN/dt � f(N), we might define a new variable y as 
y � ln(N) or perhaps y � a � bN. We could then determine how the new variable 
changes over time by rewriting the differential equation in terms of the new vari­
able. This transformation changes how we keep track of the system (in terms of 
y rather than N), but it does not alter the underlying process being modeled. 

The utility of transformations is that, when chosen well, the equation 
describing the dynamics of the new variable can be much simpler than the 
original equation. Given a choice between analyzing a simple equation in 
terms of y or a complicated equation in terms of N, it makes sense to go the 
simple route. Not only does this save effort, but it can also be the only way to 
“see” how to solve a model. Furthermore, transformations often provide 
insight into why a model behaves the way that it does. And once we have ana­
lyzed the simpler transformed equation, we can then transform back to the 
original variable to understand the dynamics of the original variable. 

In fact, we have already introduced several transformations in this book. In 
Chapter 3, we described a useful transformation in models of selection, going 
from the number of individuals carrying allele A and allele a to the proportion 
p carrying allele A (Box 3.1). And in Chapter 5, we described how the stability 
of an equilibrium can be assessed by performing a transformation from the 
original variable to a new variable describing the displacement from an equi­
librium, �1t2 � n1t2 � nN . We then transformed the recursion equation involv­
ing the original variable n(t) into a recursion equation involving the new 
variable ε(t). This transformed recursion equation was particularly helpful 
because we could approximate it with a linear equation (5.14) in ε(t) under the 
assumption that the system is near the equilibrium. 

This all sounds great, but you are probably asking yourself: how do I choose 
an appropriate transformation? This is a good question, which, unfortunately, 
does not have a simple answer. Different transformations work best in different 
situations. In this chapter, we discuss some methods and transformations that 
often work for obtaining general solutions. We also discuss clues that you can 
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use to guide your choice of transformation. Using these clues and being will­
ing to play around trying different transformations increases the likelihood 
that you will hit upon a useful one. 

6.3 Linear Models in Discrete Time 

With only one variable in discrete time, there are two types of linear models 
that we need to solve: those of the form 

n(t � 1) � Rn(t), (6.2a) 

and those that also involve a constant, 

n(t � 1) � Rn(t) � m. (6.2b) 

Equations of the first form arise when a process or processes act independently 
on every individual on a per capita basis. For example, each individual might 
give birth, die, or emigrate out of a population, leading the total number of 
births, deaths, or emigrants to be proportional to the total number of individ­
uals within the population, n(t). In contrast, equations of the second form, 
known as affine models, arise when there is a constant input or outflow from 

An affine model depends
the system that does not depend on the current state n(t). For example, there linearly on the variables 
might be a constant number of migrants into a population from a source pop- and contains a constant 
ulation, as in the toy model of mice migrating in from surrounding fields term representing any 
(equation (2.4) has the same form as (6.2b) with R � (1 � b) (1 � d )). Or there input or outflow to the 
might be a constant number of individuals that are harvested from a popula- system. 

tion per time step, causing m to be negative. Equation (6.2b) could also be used 
to describe the number of red blood cells in the body on day t, where R is the 
fraction of red blood cells that are not eliminated by the liver and m is 
the number of new red blood cells produced by the bone marrow per day. The 
important point is that in affine models with recursion equations like (6.2b), 
the variable is replenished or eliminated by a process that is not dependent on 
the current value of the variable. 

According to equation (6.2a), every time step that passes causes the previous 
solution to be multiplied by R, so n(1) � Rn(0), n(2) � Rn(1) � R2 n(0), etc. 
Consequently, at any future point in time, n(t) � Rn(t � 1) � . . .  � Rtn(0), and 
we get the general solution (6.1). If we try this technique with (6.2b), it also 
works, but the general solution is not pretty. Equation (6.2b) tells us also that 
n(2) must be Rn(1) � m. Using equation (6.2b) to substitute in for n(1), we get 
R (R n(0) � m) � m � R2 n(0) � R m  � m. It is not yet clear what is happening 
as we iterate (6.2b). If we calculate n(3) in the same manner, we get n(3) � R n(2) 
� m � R(R2 n(0) � R m  � m) � m � R3n(0) � R2 m � R m  � m. Thus, it appears 
that the general solution has the form 

t�1 

n1t2 � Rt n102 � ma R
i . (6.3a) 

i�0 
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Brute force iteration is a 

method to solve 

recursion equations by 

repeatedly plugging in 

the recursion equation 

for the value of the 

variable in the previous 

time step. 

This method, known as brute force iteration, again works in this situation. But 
this is not always the case; often brute force iteration generates a complicated 
mess of equations that do not follow any obvious pattern, especially when 
there is more than one variable. 

Life is much simpler if we first transform the affine model (6.2b) into a lin­
ear model without constants (6.2a). The transformation that accomplishes this 
goal defines a new variable �(t) as the distance between the original variable n(t) 
and the equilibrium of the system. Using this transformation, we can solve any 
affine model: 

Recipe 6.1 
Solving a Linear Discrete-Time Model with a Constant Term 
Affine recursion equations of the form n(t � 1) � �n(t) � c can be 

solved as follows: 
Step 1: Solve for the equilibrium nN . Here, nN � c>11 � �2. 
Step 2: Define a new variable �(t) as the distance of the system from 

the equilibrium, �1t2 � n1t2 � nN . Reversing this equation 
implies that n1t2 � �1t2 � nN . 

Step 3: The recursion equation for the transformed variable is 
�(t � 1) � ��(t). To prove this, use the recursion equation for 
n(t � 1) to write a recursion for �(t � 1): 

�1t � 12 � n1t � 12 � nN � �n1t2 � c � nN . 

Replacing n(t) with �1t2 � nN gives �1t � 12 � � �1t2 � � nN � c � nN . 
Plugging in the equilibrium from Step 1 and factoring causes the 
last three terms to equal zero (try this). 

Step 4: The general solution for the distance to the equilibrium is 
thus �(t) � �t �(0). 

Step 5: The general solution for the original variable is found by 
using the result from Step 4 in n1t2 � �1t2 � nN , resulting in 
n1t2 � �t �102 � nN . Rewriting �(0) in terms of n(0) gives the gen­
eral solution: 

n1t2 � �t 1n102 � nN 2 � nN 

� �t n102 � 11 � �t2 nN . 
As this recipe always works, Steps 2–4 can be skipped, and the above 

equation can be used after having identified nN and �. 

The advantage of a good transformation is that it can reveal an underlying 
simplicity to the dynamics that might be impossible to see in the original 
variable. For example, in an affine model, the fact that �(t � 1) � � �(t) tells us 
that the distance to the equilibrium changes by a factor � at every time step. Thus, 
there is exponential growth away from (� � 1) or decay toward (� � 1) the equi­
librium. This is not at all apparent when looking at the original equation (6.2b). 
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Figure 6.1: The general solution for the model of 

100 cats eating mice. The cat-mouse model given by 

75 
equation (2.4) is equivalent to (6.2b), where R � 

(1 � b) (1 � d). For d � 0.1, b � 0.1, and m � 1, 

50 the predicted equilibrium occurs at nN � 

m>11 � R2 � 100 and R � 0.99. According 
25 to the general solution (6.3b), the distance from 

the equilibrium declines by a factor, R � 0.99, 
50 100 150 200 250 300 350 400 at every time step regardless of the initial 

Time starting position. 

All we have to do to apply Recipe 6.1 is to find nN and �. The equilibrium con­
dition for (6.2b) is nN � RnN � m, which has one equilibrium at nN � m>11 � R2. 
The term � represents the factor multiplying the variable, which in this case 
equals R. Consequently, Recipe 6.1 indicates that the distance from the equi­

a 
t � 1 

Ri 

Unfortunately, there is no general recipe to follow for solving nonlinear mod­
els in discrete time, even when there is only one variable. One look at the 
extraordinarily complex dynamics of the logistic model (Figure 4.2), and it is 
no surprise that there isn’t a general solution. But even the diploid model of 
natural selection, which is pretty nicely behaved (Figure 4.7), does not have a 
general solution. If a model exhibits chaotic dynamics, then you can rest 
assured that there is no general solution. For most nonlinear models, however, 
it is hard to tell whether or not a general solution exists. Typically, we must try 

6.4 Nonlinear Models in Discrete Time 

i � 0 equals (1 � Rt )/(1 � R), which we can insert into (6.3a) and rearrange to 

get (6.3b). Thus, brute force iteration gives the same general solution as using 
a transformation. The advantage of using a transformation is that the steps are 
straightforward and the answer is simple without having to evaluate a sum. 
Even more importantly, the transformation gave us insight into how the model 
behaves—the system moves closer to or further from the equilibrium by the 
same factor R at each step (Figure 6.1). 

model look so different. In fact they aren’t different. Using Rule A1.19, the sum 

The general solution (6.3b) is certainly nicer than (6.3a), which involved a 
summation, but it is a bit disconcerting that the two solutions for the same 

librium has the general solution �(t) � Rt�(0), which decays exponentially over 
time if R � 1 and grows exponentially over time if R � 1. Plugging nN and � into 
Step 5 gives the general solution for equation (6.2b):

Po
pu
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ti
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iz
e 

of
 m

ic
e

n1t2 � Rt n102 � a1 � Rt b m 
. (6.3b)

1 � R 
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a bunch of different transformations to see if any of them dramatically simplify 
the recursion equation. 

The haploid model of selection is a good example where the dynamics can 
be simplified by using a transformation. As described in Chapters 3 and 5, the 
recursion equation for this model is 

WA p1t2 
p1t � 12 � 

WA p1t2 � Wa q1t2 , (6.4) 

and the equilibria are pN � 0 and 1. Equation (6.4) is a nonlinear function of 
the allele frequency p(t), and it is not clear that it can be solved. First, we could 
try brute force iteration, using (6.4) to define p(t � 2) as a function of p(t � 1), 
plugging in (6.4) for p(t � 1) as a function of p(t), and simplifying to infer how 
each generation of selection affects the recursion. This method does generate a 
general solution, but it is cumbersome. 

Let us try a transformation instead. You might first consider a transforma­
tion that measures the distance to an equilibrium. Well, p(t) already measures 
the distance to the equilibrium of pN � 0. We could rewrite (6.4) in terms 
of the distance to the other equilibrium, pN � 1. This distance is measured by 
q(t) � 1 � p(t), whose recursion equation is 

q1t � 12 � 1� 
WA p1t2 Wa q1t2 

(6.5)
WA p1t2 � Wa q1t2 � 

WA p1t2 � Wa q1t2. 

But equation (6.5) is no simpler than (6.4). 
What other transformations might you try? Let us step back a bit and think 

about the model. It is a symmetrical model in the sense that we could reverse 
which allele is called A and which allele is called a and get the same recursion. 
It is a good idea when seeking a transformation to preserve symmetry. That is, 
transformations like x(t) � 2 p(t) � 3 q(t) or x(t) � ep(t) � q(t) are unlikely to help 
because they break the symmetry of the model by weighting the frequency of 
alleles A and a differently. One possible symmetric transformation is d(t) � p(t) 
� q(t). Let us see if this transformation simplifies the model: 

d1t � 12 � p1t � 12 � q1t � 12 
WA p1t2 Wa q1t2 

WA p1t2 � Wa q1t2 � 
WA p1t2 � Wa q1t2 (6.6a) 

WA p1t2 � Wa q1t2 
WA p1t2 � Wa q1t2. 

This is a mixed-up recursion equation, with the variable d on the left and the 
variables p and q on the right. To fix this, we can plug q(t) � 1 � p(t) into d(t) 
to get d(t) � 2p(t) � 1, which implies that p(t) � (d(t) � 1)/2. Substituting q(t) � 

1 � p(t), then p(t) � (d(t) � 1)/2, and factoring, gives 

WA � Wa � WA d1t2 � Wa d1t2 
d1t � 12 � 

WA � Wa � WA d1t2 � Wa d1t2. (6.6b) 

This is even worse than the original recursion equation. 
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As tempting as it is to give up, let us forge ahead and try one more sym­
metrical transformation f(t) � p(t)/q(t): 

f1t � 12 � 
p1t � 12 WA p1t2 
q1t � 12 � 

Wa q1t2 (6.7) 

� 
WA f1t2.

Wa


Wow! We now have a simple recursion that has the same form as the exponential 
growth model (6.2a), with R equal to WA/Wa. Therefore, we can apply the general 
solution for the exponential model to this model: f(t) � (WA/Wa)

t f(0). Once we 
have the general solution in terms of the transformed variable, we can “back trans­
form” to obtain the general solution in terms of the original variable. Because q(t) 
equals 1 � p(t), f(t) � p(t)/(1 � p(t)), which can be rearranged to describe the old 
variable p(t) in terms of the new variable f(t) as p(t) � f(t)/(f(t) � 1). Therefore, 

¢WA ≤ t p102 
p1t2 � 

1 � 

f1t2 
f1t2 � 

1 � 

W

¢
a

WA

q

≤
1
t 

0

p

2
102 

Wa q102 (6.8) 

tWA p102 
t tWA p102 � Wa q102, 

twhere we have multiplied the top and the bottom by Wa q102 to get the last 
line. Equation (6.8) is the same general solution that we would have obtained 
by brute force iteration. 

There is an additional advantage gained from having performed this trans­
formation. Equation (6.7) provides insight into the nature of selection in the 
haploid model of selection. It tells us that selection alters the ratio of one allele 
frequency to the other by a constant factor equal to the ratio of their fitnesses. 
Consequently, the ratio of the allele frequencies undergoes exponential growth 
(when WA � Wa) or decline (when WA � Wa) over time. 

The fact that equation (6.7) is so simple also allows us to broaden the scope of 
the results. For example, so far we have assumed that the fitnesses of the two alle­
les are constant over time, but what if they vary from generation to generation? 
Suppose that at time t the fitnesses of alleles A and a are WA,t and Wa,t, respectively. 
Equation (6.7) indicates that the ratio of the allele frequencies is multiplied by 
WA,t/Wa,t each generation. Thus, we can iterate (6.7) to obtain the general solution 

t � 1 

f1t2 � ¢q 
WA,i ≤ f102 (6.9a) 

i�0 Wa,i 

(the � indicates a product, as described in Appendix 1). From Rule A1.26, we 
can rewrite the product in (6.9) in terms of the geometric mean of the relative 
fitnesses over the time span from 0 to t �1: 

f1t2 � ¢Geometric mean¢WA ≤ ≤ t

f102
Wa 
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or, equivalently, 

f1t2 � ¢ Geometric mean1WA

2
2 ≤ t

f102. (6.9b)
Geometric mean1Wa

The geometric mean of t numbers averages a set of numbers like the arithmetic 
mean, except that we multiply the numbers together and take the tth root of 

t
the result (geometric mean 2 x1 x2 Á xt) rather than add the numbers together 
and divide the result by t (arithmetic mean (x1 � x2 � � xt)/t). If the num­. . .  

bers are non-negative (as with fitnesses), the geometric mean is always less than 
or equal to the arithmetic mean and is much more sensitive to low values. For 
example, if fitness is zero in any one generation, then the geometric mean fit­
ness is zero, even if the arithmetic mean fitness is high. 

Equation (6.9b) tells us that allele A spreads over time and f(t) increases if 
the geometric mean fitness of individuals carrying A is greater than the geo­
metric mean fitness of individuals carrying a. Cannings (1971) demonstrated 
this result in more general terms and pointed out that an allele with less fitness 
variability over time tends to have a higher geometric mean fitness and is thus 
selectively favored over alleles with the same arithmetic mean fitness but 
greater temporal variability in fitness (Problem 6.1). 

To find a general solution, it is a good idea to try multiple approaches: brute 
force iteration, transformations, and/or using a mathematical software package 
(e.g., using the command “RSolve” in Mathematica). The truth of the matter, how­
ever, is that most nonlinear recursion equations do not have a general solution. 
We turn next to differential equations in continuous time, which can be solved 
for a much broader array of models. One way to obtain a rough general solution 
for a discrete-time model is to approximate the recursion equation by a differen­
tial equation and then use the methods described next. This approximation works 
well as long as the changes that occur over a time step are small (Box 2.6). 

6.5 Linear Models in Continuous Time 

As with discrete-time equations, linear differential equations have two forms: 

dn 
� r n (6.10a)

dt 

and an affine form: 

dn 
� r n � m. (6.10b)

dt 

Equation (6.10a) implies that changes in the system arise from processes occur­
ring to each individual independently, causing a constant rate of change per 
capita (due to births, deaths, emigration, etc.). In contrast, equation (6.10b) also 
allows an inflow or outflow of individuals (or whatever the variable describes) 
at a rate that does not depend on the value of the variable. For example, 
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equation (6.10b) was used by Ho et al. (1995) to model the rate of HIV turnover 
within the bloodstream (see section 1.3.2). In their model, the number of 
viruses within the plasma, V, was the variable (in place of n), and viruses were 
cleared from the bloodstream at a per capita rate c (in place of r). Regardless of 
the current number of viruses within the plasma, however, infected CD4� 

cells produced new viruses at a constant rate P (in place of m). 
Both differential equations (6.10a) and (6.10b) can be solved using the 

method known as a separation of variables (Recipe 6.2). 

Recipe 6.2 
Solving Differential Equations Using a Separation of Variables 
Differential equations that can be written as dn/dt � f(n) g(t) can be 

solved as follows: 
Step 1: Rewrite the differential equation as (1/f(n))dn � g(t)dt. 
Step 2: Take the indefinite integral of both sides ∫ (1/f(n))dn � 

∫ g(t)dt, integrating the left-hand side with respect to the depend­
ent variable n and the right-hand side with respect to the inde­
pendent variable t. Don’t forget to add a constant of integration. 

Step 3: Attempt to solve the resulting equation for n. 
Step 4: Use an initial condition (e.g., at t � 0, there are n(0) indi­

viduals) to determine the constant of integration. 

A separation of variables 

is a technique for 

solving differential 

equations that are some 

function of the 

dependent variable 

multiplied by some 

other function of the 

independent variable. 

Let us first solve the exponential-growth model (6.10a) using a separation of 
variables. We begin by writing the differential equation in the form dn/dt � 

f (n) g(t). We could choose f (n) � r n  and g(t) � 1 or we could choose f (n) � n 
and g(t) � r; either way we would get the same answer. We arbitrarily make the 
first choice. The two integrals we have to evaluate are then ∫ (1/f(n)) dn � 

∫ (1/(r n))dn � (1/r) ln(n) � c1 and ∫ g(t) dt � ∫ l dt � t � c2. Setting these equal 
to one another and merging together the constants of integration by defining 
c2 � c1 � c, we get (1/r) ln(n) � t � c. 

Now we proceed to solve for n by multiplying both sides by r and taking the 
exponential of both sides, getting n � er(t � c) � ert erc. Setting t to zero, indicates 
that n(0) � erc. Replacing erc with n(0), we obtain the general solution for the 
continuous-time model of exponential growth: 

n � e r t n(0). (6.11) 

This is the same solution as equation (4.2), which we obtained by educated 
guesswork. 

You might feel uncomfortable (reasonably enough) breaking apart a differ­
ential equation in Step 1 of Recipe 6.2 as if dn/dt represented a regular fraction. 
The best way to ensure that a mathematical shortcut works is to check that 
the solution satisfies the original equation. In this case, we can take the derivative 
of the solution n � e rt n(0) with respect to t to get dn/dt � d(ert  n(0))/dt � r ertn(0). 
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According to our general solution, er t  n(0) is equivalent to n. Making this 
replacement correctly gives the differential equation that we were trying to 
solve: dn/dt � rn. Thus, a separation of variables was successful in producing a 
general solution (6.11) that satisfies the differential equation (6.10a). The gen­
eral solution to the exponential-growth model is widely used in all aspects of 
life, including in the calculation of interest by banks (Box 6.1). 

It is worth comparing the general solutions for the continuous-time model, 
n � e r tn(0) and the discrete-time model, n � Rtn(0), of exponential growth. If 
R were equal to er, the two solutions would be identical and would predict the 
same trajectory for the population size. But if we defined r as the per capita per 
generation change in population size, then we would set R � 1 � r in the 
discrete-time model (see Chapter 3). According to the Taylor series (P1.14), 

1e r � 1 � r � 2 r
2 � Á is always greater than (1 � r) (Figure 6.2a). Thus, for 

the same per capita per generation change in population size, populations grow 
faster in continuous time than in discrete time (Figure 6.2b). Intuitively, this is 
because every offspring in continuous time can immediately reproduce and 
add to future growth, whereas offspring must wait until the next time step to 
reproduce in the discrete-time model. 

Equation (6.10b) describing exponential growth with a constant inflow or 
outflow can be solved directly using the method of separation of variables. We 
leave this task to Problem 6.4, as it represents the next most complicated prob­
lem for you to tackle. Alternatively, we can transform (6.10b) into the form of 
(6.10a) to obtain a linear differential equation without a constant term, whose 
solution we have already calculated: 

Recipe 6.3 
Solving a Linear Continuous-Time Model with a Constant Term 
Linear differential equations of the form dn/dt � � n � c can be 

solved as follows: 
Step 1: Solve for the equilibrium nN . Here, nN � �c>�. 
Step 2: Define a new variable � as the distance of the system from 

the equilibrium, � � n � nN . Reversing this equation implies 
that n � � � nN . 

Step 3: The differential equation for � is the same as the differential 
equation for n, because dn>dt � d1� � nN 2>dt � d�>dt � � n � c 
given that nN is a constant. Replacing n with � � nN and factoring 
leaves a differential equation of the form d�/dt � � �, which does 
not involve a constant term. 

Step 4: From equation (6.11), the general solution for the distance 
to the equilibrium is �(t) � e � t�(0). 

Step 5: The general solution for the original variable is found by 
� treplacing � with n � nN , and simplifying to get n1t2 � e n102� 

11 � e � t2nN . 

Next, we turn to nonlinear models in continuous time. 
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Box 6.1: Getting the Most for Your Money 

The exponential growth model can help you make wiser financial decisions. If, for example, you 
inherit $10,000 and decide to invest it in a five-year fixed-term account, you might be offered 4% 
interest per year from your bank. But how is this interest calculated? At one of our banks (a major 
Canadian bank), this interest is calculated on an annual basis, meaning that you would have 
$10,000 until the very end of the year, at which point $400 (0.04 � $10,000) would be added to the 
account. Other banks (and even other types of accounts at the same bank) calculate interest on a 
different schedule. If you found a bank that offers a 4% annual interest rate compounded monthly, 
then your $10,000 would grow at the end of the first month by $33.33 ((0.04/12) � $10,000). 

How much would your money be worth at the end of a five-year fixed term at these two 
banks? To answer this question, we can use the general solution (6.1), n(t) � Rt n(0). Here, the 
variable n(t) represents the amount of money in your account, the time step represents the 
period over which interest is calculated (one year for the first bank, one month for the second 
bank), and R is the factor by which money grows over the time step (Rannual � 1 � 0.04 for the 
first bank, Rmonthly � 1 � (0.04/12) for the second bank). After the five-year term, the amount of 
money you would have in each bank equals 

11 � 0.0425 � $10,000 � $12,166.53 (4% annual interest rate compounded yearly), 

a1 � 
0.04 b12�5 

� $10,000 � $12,209.97 (4% annual interest rate compounded monthly).
12 

Thus, you would earn $43.44 more over five years from the second bank. You could earn an extra 
$3.92 if you found a bank that compounded interest daily: 

a1 � 
0.04 b365�5 

� $10,000 � $12,213.89 (4% annual interest rate compounded daily).
365 

As you can see, the more often the interest is compounded, the more the account grows over 
time. The best that you could do, given a 4% annual interest rate, would be to find a bank that 
compounds interest continuously. To calculate how much more you would earn, we must use 
the general solution (6.11) to the continuous-time exponential model, n � er t n0. Measuring time 
in years, r represents the annual growth rate (4%), and after five years the amount of money in 
your account would be 

e0.04�5 � $10,000 � $12,214.03 (4% annual interest rate compounded continuously). 

You would gain an additional 14 cents if your savings were compounded continuously rather 
than daily. 

The continuous-time formula can also be arrived at directly from the discrete-time com­
pounding formula. In particular, if the interest was compounded a total of k times during the 
year, then after 5 years your account would contain 

a1 � 
0.04 b k�5 

� $10,000 (4% annual interest rate compounded k times/year).
k 

(continued) 
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Box 6.1 (continued) 

As k gets larger and larger (i.e., as the compounding becomes more and more frequent), this 
quantity gets closer and closer to e0.04�5 � $10,000. Indeed, in the limit as k goes to infinity, 
limk:q11 � x>k2k � ex (see Box 7.4). 

These calculations demonstrate that, if all else is equal, you should choose a bank that com­
pounds your savings as often as possible. The converse argument holds for loans, however. You 
should choose a bank that compounds your loans as infrequently as possible. The same 
Canadian bank that calculates interest on an annual basis for investments calculates interest for 
outstanding Visa bills on a daily basis! By compounding investment accounts on an annual 
basis, but calculating loans on a daily basis, the bank earns a substantial amount of money. 

Often, banks offer different interests rates. These are difficult to compare when the interest 
rates are compounded differently. The general solutions to the exponential growth model can 
help choose the bank whose rate is truly in your best interest. For example, if one bank offers a 
mortgage loan with an interest rate of 4.75% compounded monthly, would this be better or 
worse than a mortgage loan with an interest rate of 4.8% compounded annually? By com­
pounding monthly, the total amount by which the 4.75% loan would grow over the course of 
the year would be Rannual � (1 � 0.0475/12)12 � 1.04855, i.e., a 4.855% increase, which means 
that you would owe more money over the course of a year than had you taken out the loan at 
4.8% compounded annually. The difference seems pretty trivial, but home mortgages typically 
involve a lot of money paid back over a long period of time. To get the best interest rate possi­
ble, ask your banker to translate their offered rate of interest to the “effective interest rate” (EIR), 
giving the total factor by which your account or mortgage would grow over a year if you did not 
withdraw or deposit funds. 

6.6 Nonlinear Models in Continuous Time 

Most differential equations arising in biology are nonlinear functions of the vari­
able of interest. Fortunately, these can still be solved using a separation of vari­
ables, as long as they can be written in the form dn/dt � f(n)g(t). Many models 
in biology have this form because changes to the system are assumed to depend 
only on the current composition of the system and not on the exact time, so that 
g(t) � 1 and dn/dt � f(n). For such models, Recipe 6.2 can be applied. 

We have already seen two examples of differential equations of the appro­
priate form, the logistic model 

dn n 
� r n a1 � b (6.12)

dt K 

and the haploid model of selection 

dp 
� s p 11 � p2. (6.13)

dt 
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Figure 6.2: A comparison of exponential growth in discrete and continuous time. (a) e r is 
larger than 1 � r for any value of the growth rate, r. (b) Consequently, the population size is 
predicted to be larger in the continuous-time model of exponential growth, n � e r t  n(0) 
(solid), than in the discrete-time model, n � (1 � r)t n(0) (dots), given the same value of r. 

These models seem different, but in fact they are closely related. Take a close 
look at equations (6.12) and (6.13). The model of selection on haploids repre­
sents a special case of logistic growth with n � p, K � 1, and r � s. This real­
ization makes our life easier because if we solve (6.12) then we have solved 
(6.13) as well. 
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So let us apply Recipe 6.2 to the logistic model. First, we define f(n) � 

rn (1 � n/K) and g(t) � 1. The integrals we have to evaluate are then 

1 1

L f1n2 dn � L r n a1 � 
n b

 dn 

K 

and ∫ g(t)dt � ∫ 1 dt � t � c3. The first integral is a bit complicated, but it can 
be solved in a number of ways, including consulting tables of integrals (e.g., 
Appendix 1; Rule A2.22) or using software packages like Maple or Mathematica. 

We will solve this integral, however, using partial fractions. Whenever you 
have a fraction like 

1 
, 

r n a1 � 
n b
K 

involving the product of two linear functions in the denominator (here, r n  and 
1 � n/K), we can always break the fraction into two pieces using Rule A1.9. In 
this example, 

1 
1 1 r K 

� � 

r n a1 � 
n 
K 
b r n a1 � 

n 
K 
b 

These two terms can be integrated separately. We’ve already calculated 

L 

1
 dn � 

1 
ln1n2 � c1 r n r

for the exponential-growth model. The second term integrates to 

1 1 1 n 
rK L 

dn � �  
r
 lna1 �

K 
b � c2. 

a1 � 
n b
K 

Adding these terms together, setting them equal to ∫ g(t) dt � ∫ 1 dt � t � c3, 
and merging the constants of integration leaves us with 

1 1 n
ln1n2 � lna1 � b � t � c. 

r r K 
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We next proceed to Step 3: solving this equation for the population size. 
Multiplying both sides by r and using Rule A1.14 to gather together the loga­
rithmic terms leaves us with ln(n/(1 � n/K)) � r t  � rc. Taking the exponential 
of both sides gives n/(1 � n/K) � e r t  � rc � e r t e rc. This result is the same as the 
exponential-growth model except for the term in the denominator on the left, 
1 � n/K. This term measures the proportional distance to the carrying capacity 
(for example, if n � K/3, then the population is 2/3 away from the carrying 
capacity). Thus, this result suggests that the population size grows exponen­
tially when measured relative to the distance of the population from the car­
rying capacity. Solving this equation for n (Recipe 5.2) gives us the solution to 
the continuous-time logistic model: 

n1t2 � 
1 � 

e
e

rte
rte

rc

rc>K 
(6.14a) 

To solve for c, we could use either equation (6.14a) or the previous equa­
tion n/(1 � n/K) � e r te rc, but the latter is easier because c appears only 
once. Setting t � 0, we find that n0/(1 � n0/K) � e r c. Making this replace­
ment for e r c  in equation (6.14a), we get the general solution for the population 
size: 

r tae
n0 b 

n1t2 � 
e r t 

1 � n0

n

>
0 

K
(6.14b) 

1 � 
K 
a 

1 � n0>K b 

e r tn0
� . 

n0 e r tn01 � �
K K 

To simplify the fractions, we have multiplied the top and bottom by 1 � n0/K 
in the last line. 

Again, it is a good idea to check the general solution for n by taking its deriv­
ative and making sure that we can rewrite it as (6.12). We can also compare 
equation (6.14b) to numerical solutions of the differential equation (see the on­
line Lab exercise on solving differential equations; Figure 6.3). Both checks 
confirm that (6.14b) satisfies the differential equation for the logistic model. 

Now let us take advantage of the fact that the haploid model of selection is 
a special case of the logistic model with n � p, K � 1, and r � s to solve this 
model too: 

p1t2 � 
1 � p

e

0 

stp

� 

0 

e stp0
. (6.15a) 
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Recalling that the selection coefficient s describes the difference in growth rates 
between the two alleles, rA � ra (Box 3.1), equation (6.15a) can be written as 

1rA � ra2t 
p1t2 � 11 � p

e

02 � e

p
1r
0 

A � ra2t p0

. (6.15b) 

Multiplying the top and bottom by e r a t , 

p1t2 � 
e ra t11 � 

e

p

rA 

0

t 

2 
p0 

� e rA t p0
. (6.15c) 

Equation (6.15c) is analogous to the discrete-time model (6.8), but with e rj 
replacing Wj. 

At this point, it might seem puzzling that the haploid model of selection is 
a special case of the logistic model in continuous time but that the haploid 
model and logistic model behave so differently in discrete time. Unlike the 
continuous-time model, there is no choice of parameters that converts the 
logistic model in discrete time into the haploid model of selection (compare 
equations (3.5b) and (3.9)). Furthermore, while there is a general solution (6.8) 
describing the haploid model at any future point in discrete time, there is no 
general solution for the logistic model in discrete time. The oscillations and 
chaos exhibited by the logistic model cannot be described by any simple func­
tion of time. The underlying reason why the haploid model and logistic model 
behave so differently in discrete time is that their nonlinearity arises in differ­
ent ways. In the haploid model of selection, the nonlinearity arises because the 
allele frequencies are normalized to sum to one. Because each allele frequency is 
positive, the normalizing factor (the mean fitness) is positive, and the allele fre­
quencies remain positive after normalization (see equation (6.4)). Because no 
allele frequency can ever become negative, the allele frequencies cannot over­
shoot either equilibrium, pN � 0 or pN � 1. In contrast, the logistic recursion 
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equation is nonlinear because the number of surviving offspring per parent is 
assumed to depend on the population size. There is no normalization proce­
dure in the logistic model, and the population size is free to rise above and fall 
below the carrying capacity. It is because the equilibrium can be overshot in the 
logistic model that chaos is possible. 

We have described how a separation of variables can be used to solve differ­
ential equations of the form dn/dt � f(n)g(t). Even for such differential equa­
tions, however, a separation of variables is not guaranteed to yield a solution. 
The integrals in Step 2 of Recipe (6.2) might be impossible to evaluate. Even 
when the integrations can be performed, they can yield an equation for the 
variable n that cannot be explicitly solved (e.g., in the diploid model of natu­
ral selection; see Problem 6.7). On the other hand, just because a differential 
equation cannot be written in the form dn/dt � f(n)g(t) does not mean that it 
cannot be solved. Indeed, entire books are devoted to methods for solving var­
ious types of differential equations (see further reading). In Box 6.2, we provide 
the solutions to other forms of differential equations that are commonly 
encountered in biological models (see Problems 6.9–6.12). 

6.7 Concluding Message 

In this chapter we have discussed the utility of transformations as well as how 
to obtain general solutions to some models with one variable. A general solu­
tion predicts the state of a system at any future point in time, as a function of 
the initial state of the system, the parameters, and the amount of time that has 
passed. Thus, a general solution describes the behavior of a model in one for­
mula and can be used to answer any question about the model. For example, 
the long-term behavior of a system can be determined by allowing time to 
increase to infinity in the general solution. Also, the form of the general solu­
tion often provides insight into the fundamental manner by which a biologi­
cal system changes. In the haploid model of selection, for instance, we learned 
that each generation of selection alters the ratio of allele frequencies by a fac­
tor equal to the ratio of their fitnesses. 

For models involving a single variable, we have discussed several methods 
for obtaining a general solution. For a linear model, there is always a general 
solution, whether the model involves a constant input or output term (an 
affine model) or not (Recipe 6.1 and 6.3; equations (6.1) and (6.11)). The pic­
ture is not so rosy for nonlinear models. Except for a small subset of models in 
continuous time (see, for example, Box 6.2), there is no recipe to follow that is 
guaranteed to yield a general solution. Various techniques, from brute force 
iteration to transformations, must be tried in the hopes of hitting upon a gen­
eral solution. As a rough guiding principle, general solutions are most likely to 
exist for models with only one stable equilibrium, but even such models can­
not always be solved (e.g., the logistic model in discrete time). When a general 
solution is elusive, plotting numerical solutions (Chapter 4) alongside a stabil­
ity analysis (Chapter 5) can be used to obtain as comprehensive a picture as 
possible. 
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Box 6.2: Some Additional Methods for Solving Differential Equations 

Many methods exist to solve differential equations (see further reading). In this box, we sum­
marize some useful techniques that help solve differential equations that are commonly encoun­
tered in biological models. 

Linear differential equations have the form 

dn 
dt 

.� f1t2 n � g1t2 (6.2.1) 

The solution to a linear differential equation is 

n � e �(t) ¢ 3e��(t)g(t) dt � c≤ , (6.2.2) 

Where �(t) � ∫ f(t)dt. This equation and its solution apply, for example, to a population that 
experiences immigration or harvesting at a variable rate over time, g(t) (independent of the cur­
rent population size) and that undergoes exponential growth or decline at a variable rate f(t) (see 
Problems 6.9 and 6.13). 

Homogeneous differential equations have the form 

dn n 
� Fa b , (6.2.3)

dt t 

where F is any function that depends only on the ratio n/t and not on n or t independently. 
Homogeneous equations can be solved by defining a new variable v � n/t. The differential equa­
tion for v will then be 

da n b
dv t 1 dn n 
dt 

� 
dt 

� 
t dt 

� 
t 2

. 

Plugging in the equation for dn/dt and replacing n with v t  allows us to simplify this equation to 

dv F1v2 � v 
� ,

dt t 

which is always separable and can be solved using Recipe 6.2, even if the original differential 
equation for n was not separable. 

Bernoulli differential equations have the form 

dn 
� n f1t2 � n ag1t2. (6.2.4)

dt 
(continued) 
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Box 6.2 (continued) 

Bernoulli equations can be solved by defining a new variable v � n1�a. The differential equation 
for v will then be 

�adv 
� 

d1n1 � a2 
� 11 � a2n dn 

.
dt dt dt 

Plugging in dn/dt for the Bernoulli equation gives 

dv 
� 11 � a21n1�a f1t2 � g1t22.

dt 

By definition, n1�a is v, so a Bernoulli equation can be rewritten as 

dv 
� 11 � a21v f1t2 � g1t22. (6.2.5)

dt 

This is a linear differential equation and has the solution (6.2.2) once f and g are redefined to 
include the constant term (1 – a) in (6.2.5). The logistic equation (6.12) is a special case of (6.2.4) 
with f(t) � r, a � 2, and g(t) � –r/K (Problem 6.10). The power of this method is that it allows us 
to obtain solutions to a generalized logistic equation in which the intrinsic growth rate r and/or 
the carrying capacity K vary over time (Problem 6.12). 

Problems 

Problem 6.1: Consider the haploid model of selection with two alleles A and a, where 

the fitness of allele A relative to that of allele a alternates from generation to gen­

eration between WA � 3/2 and WA � 1/2. (a) Calculate the arithmetic average fit­

ness of the two alleles over a time period from 0 to t � 1, which may be even or 

odd (Rule A1.21). (b) Calculate the geometric average fitness of the two alleles over 

the same time span (Rule A1.26). (c) Over the long term, which allele will spread? 

Problem 6.2: In the presence of mutations, allele frequencies change over time even 

when selection is absent. Assume that a fraction � of A alleles is converted to a 

each generation, while a fraction � of a alleles is converted to A each generation. 

The frequency of A is then described by the recursion equation p(t � 1) � (1 � �) 

p(t) � � q(t). (a) Determine the equilibrium for this model of mutation (don’t for­

get to rewrite q in terms of p). (b) Determine the general solution for this model 

using recipe 6.1. (c) How rapidly does the allele frequency approach the equilib­

rium, assuming that the mutation rates are very low? 

Problem 6.3: Here, we expand the exponential growth model to consider the case where the 

per capita number of surviving offspring, R, declines as an inverse function of the cur­

rent population size R � Rl n(t)�b, where Rl represents the number of surviving 
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offspring when there is only one individual in the population. (a) By brute 

force iteration, determine the general solution for the resulting recursion equation 

n(t � 1) � Rl n(t)1�b. Simplify your result using Rules A1.1 and A1.19. (b) Check the 

result from (a) when b � 1, by noting that n(t � 1) then equals R1 regardless of the 

initial population size. (c) Assuming that 0 � b � 1, let t go to infinity in your gen­

eral solution and determine the population size toward which the system will head. 

(You can check this result by finding the equilibrium for the recursion equation.) 

Problem 6.4: Messenger RNA levels within the cell reflect the production of new mRNA 

molecules by transcription of genes and the decay of existing mRNA transcripts. 

Let m represent the number of new transcripts produced per second and r repre­

sent the rate of decay of existing transcripts. The change in the number of mRNA 

molecules within the cell can then be described by the differential equation 

(6.10b): 

dn 
� �r n � m.

dt 

(a) Solve for the equilibrium of this differential equation, nN . (b) By blocking the 

production of new transcripts (m � 0), Iyer and Struhl (1997) estimated the half-

life of mRNA transcripts for the histidine gene of yeast, his3, to be 660 seconds. 

Use the general solution for the exponential decay model n(t) � e�rt n(0) to estimate 

r given m � 0 and n � n0/2 after 660 seconds. (c) Iyer and Struhl (1997) also deter­

mined that the normal number of mRNA transcripts within yeast cells was about 

7. Assuming that the normal transcript levels are at equilibrium, use your answers 

to (a) and (b) to estimate the rate of transcriptional initiation m for his3. (d) Solve 

the differential equation by the method of a separation of variables. Use the initial 

condition, n � n0 at t � 0, to replace the constant of integration. [Show your work.] 

(e) If the mRNA became degraded by heat such that n0 � 0, how long would it take 

for the cell to regain approximately half of the normal level of mRNA molecules 

1n � nN >22? Does this time depend on the rate of mRNA decay r or the rate of tran­

scription initiation m? (f) Using your estimates for r and m from (b) and (c), plot 

the general solution from (d) giving the expected number of mRNA molecules as 

a function of time (using Mathematica or any other method). Check that your 

answer to (e) is consistent with this plot. [Note that these methods were the very 

ones used by Iyer and Struhl (1997) to characterize mRNA decay rates and rates of 

transcriptional initiation.] 

Problem 6.5: Habitat degradation can cause the growth rate of a population to decline 

over time. This can be modeled by modifying the exponential growth model such 

that r becomes r0 � �t, where � represents the rate of habitat destruction. The size 

of a population then follows the differential equation 

dn 
� 1r0 � � t2 n.

dt 

(a) Using the method of a separation of variables, solve for the population size at 

time t given that the population was at size n0 at time t � 0. (b) Using your answer 

to (a), determine the predicted extinction time as the time it would take for the 
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population to decline to a single individual (n0 � 1). [The quadratic formula will


give you two solutions for t. Choose the appropriate root and explain your choice.]


Problem 6.6: By differentiating p(t) with respect to time, check that the solution to the


model of haploid selection, (6.15a), satisfies the differential equation (6.13).


Problem 6.7: Consider the diploid model of selection in continuous time. As shown in


Problem 3.16, the differential equation for the A allele frequency can be written as 

dp 
� s p 11 � p21p � h 11 � 2p22,

dt 

where WAA � 1 � s, WAa � 1 � h s, and Waa � 1. 

(a) Try solving this differential equation using DSolve in Mathematica. (b) The


answer to (a) is not pretty and involves an InverseFunction, which is Mathematica’s


way of saying that it cannot find an explicit solution for p even though it knows


a function that p must satisfy. Find this function by performing a separation of


variables (use Mathematica for help with the integral). (c) Show that this function


cannot be simplified even if allele A is recessive (h � 0) or dominant (h � 1) but


that it can be simplified when selection is additive (h � 1/2). (d) By comparing the


above differential equation to (6.13), infer the general solution for the continuous-


time model of diploid selection when selection is additive (h � 1/2).


Problem 6.8: Within a population, say of university students, one can model the spread 

of infectious diseases, like colds, using the flow diagram in Figure 6.4. 

The parameter c represents the per capita rate at which an infected individual


contacts a susceptible individual, a is the probability of transmission of the disease


per contact, and � is the rate at which individuals recover from the disease. In this


model, the population is assumed constant over the time frame of interest (e.g., we


can treat the number of students as roughly constant over a school year), and indi­


viduals who recover from the disease are assumed to be susceptible again. This


assumption is reasonable for colds, which are caused by a large number of differ­


ent viruses. The following differential equations can be used to track the number


of susceptible individuals S and infected individuals I over time:


dS 
� �a c S I � � I, (Q6.1a)

dt 

dI 
� a c S I � � I. (Q6.1b)

dt 

Figure 6.4: Flow diagram for a susceptible-
infected model. 

Susceptible 
S(t) 

Infected 
I(t) 

σ I(t) 

a c S(t) I(t) 
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(a) Use the quotient rule (see Box 3.1) and the above equations to prove that the 

proportion of infected individuals, P � I/(S � I), satisfies the differential equation 

dP 
� 	 P 11 � P2 � � P (Q6.2)

dt 

where 	 � ac (S � I ) represents the infectivity of the disease, a, times the total rate 

of contact among individuals in the population. Because we assume that the total 

population size S � I remains constant, the differential equation (Q6.2) depends 

only on the fraction of infected individuals, P. (b) Determine the equilibria for 

(Q6.2) and determine when each equilibrium is valid given that P represents a 

proportion. (c) Determine the local stability condition for each equilibrium. 

Describe in words what these conditions imply. (d) Assuming that the force of 

infection 	 is greater than the recovery rate � and using the information obtained 

from parts (b) and (c), sketch the shape that the differential equation must have in 

a plot of dP/dt (vertical axis) versus P (horizontal axis). Use this sketch to deter­

mine which equilibrium is globally stable over the range 0 � P � 1. (e) Determine 

the general solution for (Q6.2). [There are multiple ways of doing this, including 

using a separation of variables. The simplest method is to show how (Q6.2) and 

the logistic equation (6.12) are related.] 

Problem 6.9: Sink populations are defined as populations that are maintained by migra­

tion from another source population. Here we consider a sink population with a 

negative intrinsic growth rate that receives immigrants at rate m per year, which is 

decreasing over time due to habitat deterioration in migration corridors, m � m0 � �t. 

A differential equation describing this situation is 

dn 
� r n � 1m0 � � t2.

dt 

(a) Use the solution for a linear model from Box 6.2 to obtain the general solution 

for this model. (b) Plot the result using the parameters r � �0.01, m0 � 0.5, � � 

0.02, and initial population size n0 � 40. (c) Explain why the curve has the shape 

that it does and specify when you expect the sink population to go extinct. 

Problem 6.10: Solve the logistic model in continuous time using the recipe for solving a 

Bernoulli differential equation, dn/dt � n f(t) � na g(t) where f(t) � r, a � 2, and 

g(t) � �r/K (see Box 6.2). Check your answer against the solution (6.14b). 

Problem 6.11: Solve the haploid model of selection in continuous time, dp/dt � s p (1 � p), 

under the assumption that the selection coefficient varies sinusoidally with time, 

s � s0 � � sin(
t), as might be the case in a seasonal environment. Use the fact that 

the model is a Bernoulli differential equation with a � 2 (Box 6.2) and the fact that 

∫ e f (t) (df(t)/dt) dt � e f (t) � c (see Rule A2.6). Use the initial allele frequency p0 to 

solve for the constant of integration, c. Check that your answer is consistent with 

(6.15a) when � � 0. If s0 � 0, what happens as time goes to infinity? 

Problem 6.12: By decreasing the density of resources available, habitat degradation could 

act to reduce the reproductive potential of a species or to increase the amount of 

territory needed to sustain each individual. Here we alter the logistic model by 

allowing r or K to decrease over time. (a) Solve the logistic equation in continuous 

time when r(t) � r0(1 � �t) but K(t) � K0 is constant. (b) Solve the logistic equation 
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in continuous time when K(t) � K0/(1 � �t) but r(t) � r0 is constant. (c) Plot and


compare your solutions starting from n0 � 500 individuals with r0 � 1, K0 � 1000,


and � � 0.1. Use the fact that the logistic equation with time varying parameters,


written as dn/dt � n r(t) � n2 r(t)/K(t), corresponds to a Bernoulli differential equa­


tion (Box 6.2). [Hint: Rules A2.23 and A2.29 can help with the integrals. Do not


forget to include the constant of integration.]


Problem 6.13: The cat-mouse model discussed in Chapter 2 is described by the differen­

tial equation dn/dt � b n  � d n  � m. (a) Solve this differential equation using a 

separation of variables, assuming that the initial number of mice is n0. (b) Solve 

using the solution to a linear differential equation (6.2.2). (c) Check that these two 

solutions are consistent with each other. 

Problem 6.14: Here we generalize the exponential growth model (6.1) to allow the envi­

ronment to vary over time, causing the number of surviving individuals per par­

ent, Rt, to depend on time. (a) By brute force iteration, solve the model of 

exponential growth n(t � 1) � Rt n(t). (b) Rewrite your solution to (a) in terms of 

the geometric mean value of Rt over the time span from 0 to t�1. (c) Based on 

these calculations, what would you expect to happen over the long term if the 

environment fluctuated such that Rt � 1/3 in every odd time step and Rt � 2 in 

every even time step? 

Further Reading 

For further information on solving differential equations, consult 

•	 Arnold, V.I., and R. Cooke. 1994. Ordinary Differential Equations and Their Applications, 

3rd ed. Springer-Verlag, New York. 

•	 Boyce, W.E., and R. C. Di Prima. 2004. Elementary Differential Equations and Boundary 

Value Problems, 8th ed. Wiley, New York. 

•	 Braun, M. 1983, Differential Equations and Their Applications, 3rd ed. Springer-Verlag, 

New York. 

•	 Bronson. R. 1994. Schaum’s Outline of Differential Equations, 2nd ed. McGraw-Hill Trade, 

New York. 

•	 Polking, J. et al. 2002. Differential Equations with Boundary Value Problems, 1st edition, 

Prentice-Hall, Englewood Cliffs, N.J. 
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