
I N T R O D U C T I O N : W H Y S P I N G L A S S E S ?

Spin glasses are disordered magnetic materials, and it’s hard
to find a less promising candidate to serve as a focal point
of complexity studies, much less as the object of thousands of
investigations. On first inspection, they don’t seem particularly
exciting. Although they’re a type of magnet, they’re not very good
at being magnetic. Metallic spin glasses are unremarkable con-
ductors, and insulating spin glasses are fairly useless as practical
insulators. So why the interest?

Well, the answer to that depends on where you’re coming
from. In what follows we’ll explore those features of spin glasses
that have attracted, in turn, condensed matter and statistical
physicists, complexity scientists, and mathematicians and applied
mathematicians of various sorts. In this introduction, we’ll briefly
touch on some of these features in order to (we hope) spark your
interest. But to dig deeper and get a real sense of what’s going
on—that can fill a book.

Spin glass research provides mathematical tools to analyze
some interesting (and hard) real-world problems.

Suppose you’re given the following easily stated problem.
You’re shown a collection of N points on the plane, which we’ll
call cities. You’re asked to start at one of the cities (any one will
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Figure I.1. (a) An instance of a TSP problem with 19 cities. (b) One
possible tour.

do), draw an unbroken line that crosses each of the other cities
exactly once, and returns to the starting point. Such a line is called
a tour, and an example is shown in figure I.1. All you need to do
is to find the shortest possible tour.

This is an example of the Traveling Salesman Problem, or TSP
for short.1 An “instance,” or realization of the problem, is some
specific placement of points on the plane (which a priori can be
put anywhere). You should be able to convince yourself that the
number of distinct tours when there are N cities is (N − 1)!/2.
The factor of two in the denominator arises because a single tour
can run in either direction.

Notice how quickly the number of tours increases with N: for
5 cities, there are 12 distinct tours; for 10 cities, 181,440 tours;
and for 50 cities (not unusual for a sales or book tour in real life),
the number of tours is approximately 3 × 1062. The seemingly
easy (i.e., lazy) way to solve this is to look at every possible tour
and compute its length, a method called exhaustive search. Of
course, you’re not about to do that yourself, but you have access
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to a modern high-speed computer. If your computer can check
out—let’s be generous—a billion tours every second, it would
take it 1046 years to come up with the answer for a 50-city tour.
(For comparison, the current age of the universe is estimated at
roughly 1.3×1010 years.) Switching to the fastest supercomputer
won’t help you much. Clearly, you’ll need to find a much more
efficient algorithm.

Does this problem seem to be of only academic interest?
Perhaps it is,2 but the same issues—lots of possible trial solutions
to be tested and a multitude of conflicting constraints making it
hard to find the best one—arise in many important real-world
problems. These include airline scheduling, pattern recognition,
circuit wiring, packing objects of various sizes and shapes into
a physical space or (mathematically similarly) encoded messages
into a communications channel, and a vast multitude of others
(including problems in logic and number theory that really are
mainly interesting only to academic mathematicians).

These are all examples of what are called combinatorial op-
timization problems, which typically, though not always, arise
from a branch of mathematics called graph theory. We’ll discuss
these kinds of problems in chapter 6, but what should be clear for
now is that they have the property that the number of possible
solutions (e.g., the number of possible tours in the TSP) grows ex-
plosively as the number N of input variables (the number of cities
in the TSP) increases. Finding the best solution as N gets large
may or may not be possible within a reasonable time, and one
often has to be satisfied with finding one of many “near-optimal,”
or very good if not the best, solutions. Whichever kind of solution
one seeks, it’s clear that some clever programming is required. For
both algorithmic and theoretical reasons, these kinds of problems
have become of enormous interest to computer scientists.

What have spin glasses to do with all this? As it turns out,
quite a lot. Investigations into spin glasses have turned up a
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number of surprising features, one of which is that the problem
of finding low-energy states of spin glasses is just another one
of these kinds of problems. This led directly from studies of
spin glasses to the creation of new algorithms for solving the
TSP and other combinatorial optimization problems. Moreover,
theoretical work trying to unravel the nature of spin glasses led
to the development of analytical tools that turned out to apply
nicely to these sorts of problems. So, even in the early days of
spin glass research, it became clear that they could appeal to a far
greater class of researchers than a narrow group of physicists and
mathematicians.

Spin glasses represent a gap in our understanding of the
solid state.

Why is a crystalline solid (in which constituent atoms or
molecules sit in an ordered, regular array) rigid? It may be
surprising to learn that it wasn’t until the twentieth century that
we understood the answer to this question at a deep level.

Why is window glass (which does not have crystalline struc-
ture; the atoms sit in what look to be random locations) rigid?
That’s an even harder question, and you may be even more
surprised to learn that we still can’t answer that question at a deep
level.

Of course, at what level you’re satisfied with an explanation
depends on your point of view: an answer that satisfies a chemist
may not satisfy a physicist (and vice versa), and mathematicians
are hard to convince of anything (so they’re seldom satisfied). To
be fair, at some level we’ve understood the nature of the solid state
since the nineteenth century, when modern thermodynamics and
statistical mechanics were developed by Gibbs, Boltzmann, and
others. The basic idea is this. Atoms and molecules at close range
attract each other, but they’re never isolated from the rest of the
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world; consequently, the constituent particles of a system always
have a random kinetic energy that we measure as temperature.
At higher temperatures, entropy (roughly speaking, disorder
induced by random thermal motions) wins out, and we have a
liquid or gas. At lower temperatures the attractive forces win out,
and the system assumes a low-energy ordered state—a crystalline
solid. Liquids and crystals are two different phases of matter, and
the transition from one to the other, not surprisingly, is called a
phase transition.

If you’ve taken introductory-level physics or chemistry courses
you know all this. But there are deeper issues, which enter because
there are features accompanying the ordered state that aren’t
so easy to explain. One of these is what Philip Anderson calls
“generalized rigidity” [13]: when you push on the atoms in a
crystal at one end, the force propagates in a more or less uniform
manner throughout the crystal so that the entire solid moves as a
single entity.

This is something we all take for granted. Why is it mysteri-
ous? Well, interatomic forces are short range and typically extend
only about 10−8 cm, whereas when you push on a solid at one
end, the force you apply is transmitted in a perfectly uniform
manner a billion or more times the range of the interatomic force.
How does that happen? What changed from the liquid state,
where the exact same forces are present? At the very least, why
doesn’t the solid crumple, or bend? (And for that matter, what
new phenomena need to be invoked to explain crumpling and
bending when they do happen?)

This phenomenon isn’t unique to solids; the transmission of
forces over long distances also occurs, for example, in liquid
crystals. In fact, this property is widespread in a general sense:
it occurs whenever there’s a transition to an ordered state that
possesses a symmetry (whose form may not always be obvi-
ous) that differs from the thermally disordered state. Without
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generalized rigidity, not only would solids not be “solid” but
magnets wouldn’t be magnetic, supercurrents wouldn’t flow in
superconductors, and we wouldn’t be here to observe all this.
All these effects have similar underlying causes, but a deep
understanding based on a small set of unifying principles didn’t
arise until after World War II.

At this point those of you with physics or chemistry back-
grounds might feel some impatience, and protest that the answer
really isn’t all that complicated. If all atoms place themselves at
the same distance from their nearest neighbors—that is, form a
crystal—then they’ve created a very low energy state. Deforming
this state would require a large input of energy, as anyone who’s
ever tried to bend, tear, or deform a solid knows. This answer is
perfectly correct, and is fine as far as it goes. But it’s unsatisfying
at several levels. For one thing, as we’ll see momentarily, it fails as
an explanation of why glass—which is not a crystal—is rigid. Nor
does it explain the sharp discontinuity in rigidity behavior at the
liquid→crystal phase transition. A few thousandths of a degree
above the transition, there’s no rigidity; just below, there is.
Wouldn’t a gradual change in rigidity as temperature is lowered
make more sense? But that’s not what happens.

So there’s much that this simple answer leaves unexplained,
and many interesting phenomena that it can’t by itself pre-
dict. Additional—and deeper—principles and concepts are
needed.

Generalized rigidity is one of many examples falling within
the category of “emergent behavior”: when you have a system
of many interacting “agents”—whether they’re physical particles
exerting mutual forces, or interacting species in an ecosystem, or
buyers and sellers in the stock market—new kinds of behavior
arise that for the most part are not predictable or manifest at the
level of the individual. In the case we just discussed, something
new happens when atoms rearrange to form a crystal; the ability
to transmit forces over large distances is not present in the
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fundamental physical interactions—in this case, the interatomic
forces—that ultimately give rise to this effect. Rigidity must
somehow arise from the collective properties of all the particles
and forces: what we call long-range order (long range, that is,
on the scale of the fundamental interatomic force) and broken
symmetry (more on that later).

The idea of emergence is probably the most common underly-
ing thread in complexity science, but as this example shows, emer-
gence is not confined to complex systems. (At least the authors
have never heard of table salt referred to as a complex system.)

But back to glasses. The problem here is that as far as we know,
there is no phase transition (which in physics has a very specific
meaning) from liquid to glass, no obvious broken symmetry, and
no obvious long-range order (though a number of speculative
candidates for these last two have been proposed). A glass is a
liquid that just gets more and more viscous and sluggish as it’s
cooled, until eventually it stops flowing on human timescales.
(By the way, that old nugget about windows in thousand-year-
old European cathedrals being thicker at the bottom than at the
top as a result of glassy flow over a thousand-year period isn’t so.
If you see a window with this feature, it had some other, more
prosaic cause. Flow in window glass at room temperature would
take place on timescales much longer than the age of the universe.
Glass really is rigid.)

So why is glass rigid? As of this writing, there are lots of
theories and suggestions, but none that is universally accepted.
The problem is that a glass is a type of disordered system—
the atoms in a glass sit at random locations. But much of our
current understanding of condensed matter systems—crystalline
solids, ferromagnets, liquid crystals, superconductors, and so
on—applies to ordered systems with well-understood symmetries
that enable profound mathematical simplifications and physical
insights. So it’s not only our ideas on rigidity (about which
we won’t have much more to say) that glasses challenge.
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They challenge equally our understanding of many less familiar
but equally fundamental properties of the condensed state. We’ll
encounter many of these as we go along.

An important clarification: when we talk about disorder in
glasses, we’re not talking about the kind you see in liquids or
gases, where at any moment atoms are also at random locations.
In those higher-temperature systems, the disorder arises from
thermal agitation, and the atoms (or whatever individual units
constitute the system) are rapidly flitting about and changing
places. That enables us to do some statistical averaging, which
in turn allows us to understand the system mathematically and
physically. Glasses, on the other hand, are stuck, or “quenched,”
in a low-temperature disordered state, and so we can’t apply the
same set of mathematical and physical tools that we can apply to
the liquid or gaseous state. And similarly, because of the lack of
any kind of obvious ordering, we can’t apply the same set of tools
that we utilized to understand the crystalline solid state.

Spin glasses are also systems with this sort of “quenched
disorder,” but here the disorder is magnetic rather than structural.
We’ll explain this in more detail in chapter 4, but for now it’s
sufficient to note that spin glasses might provide a better starting
point from which to develop a theory of disordered systems than
ordinary glasses. That, and the fact that there’s a gaping hole in
our understanding of the condensed state owing to our lack of
a deep understanding of systems with quenched disorder, is the
reason why spin glasses have attracted so much interest among
physicists and mathematicians.

Spin glasses display features that are widespread in
complex systems.

So far we’ve indicated why mathematicians, physicists,
chemists, computer scientists, and engineers might (or should) be
interested in spin glasses. But complexity studies cast a wide net,
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bringing in not only workers in these fields but also biologists,
economists, and other natural and social scientists of various
backgrounds and interests. What about them?

This is usually the point where treatises on the subject attempt
to provide a working definition of complexity. We won’t attempt
that here, and not only because we don’t know the answer.
After many years, there still is no universally accepted definition
of complexity, or of how to determine whether a given system
is “complex.” This is not for lack of trying, and many people
(including one of us) have made proposals.

But it’s not our goal, and certainly not the purpose of this
introduction, to concisely define complexity.3 That purpose,
aside from the usual one of acquainting the reader with some
basic ideas and concepts, is to convince her or him that it’s worth
investing some time to read the rest of the book. If you’re still
with us, then in your case we haven’t yet obviously failed, but
you may still be wondering whether all this has any relevance to
your own field of interest. So we’ll now take a look at some of the
broader impacts and applications of spin glass theory.

We’ll begin the discussion by asking, what kinds of systems
are generally agreed upon (even in the absence of a definition) to
be complex?

A far from exhaustive list might include a wide variety of
adaptive systems or processes, systems that exhibit pattern for-
mation, scale-free systems or networks, systems with a modular or
hierarchical architecture, and systems generating or incorporating
large amounts of information. Of course, some of the most
interesting complex systems display several or all of these features
at once.

We’ll briefly discuss a few examples of each. Adaptation occurs
in many contexts: biological evolution, ecological networks, the
immune system, learning and cognition in biological and artificial
systems, adaptive computer algorithms, economic and social
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systems, and many more. Biological pattern formation occurs
at the cellular level in morphogenesis, at the organismal level
in zebra stripes and butterfly wings, and at the group level in
schooling fish. Nonbiological patterns occur in cellular automata,
or in physical systems far from equilibrium, such as the regularly
spaced ripples that occur in sand dunes or in “cloud streets,” or
the oscillations that occur in certain driven chemical systems.
“Scale-free” systems exhibit similar-looking structure, phenom-
ena, or behaviors on many length- or timescales, not just one or a
few. The canonical example of this is the appearance of vorticity
at multiple lengthscales in turbulent fluid flow, but scale-free
behavior or structure in one form or another characterizes many
complex systems and networks, whether physical, biological, or
social.

Almost all systems regarded as complex are out of equilibrium
(defined appropriately for the system in question) and maintain
themselves at the boundary between rigid ordering (as in a
crystal, where not much change can occur) and chaotic flow
(where, so to speak, too much change is occurring, so that
no coherent ordering, evolution, or adaptation can take place).
This is sometimes referred to as being at the edge of chaos
[16, 21, 22]; these systems maintain a delicate balance so that
an ordered structure can be maintained while growth, evolution,
and adaptation can still occur.

Many complex systems, particularly those that are the result
of some kind of evolution (biological or otherwise), are hierarchi-
cally structured. A full-blown complex structure cannot spontan-
eously arise all at once; a modular architecture enabling a
gradual increase in complexity is needed. And finally, the above
discussion implies that all complex systems possess or generate a
large degree of information, whether in the Shannon, algorithmic,
or other sense.
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Perhaps one of the most important unifying features of com-
plex systems, and one that doesn’t get mentioned often enough, is
that many of them surround us in the everyday world; sometimes
they are even a part of us, such as our own brains or immune
systems. Unlike many other systems investigated by scientists,
they’re typically not obscure or esoteric or known only to a
small group of specialists or experts. And as a corollary, they
are not idealized in any sense: they’re real-world, messy systems,
inspiring difficult questions that usually don’t fit neatly into any
one scientific category, such as biology, chemistry, or physics.
They transcend disciplines, and consequently their understand-
ing usually requires transdisciplinary collaborations and insights.
All scientific problems are complicated, but only some are
complex.

So, where do spin glasses fit into all of this? It’s probably
already apparent that spin glasses don’t adapt in any usual sense
of the word, nor do they form any obvious patterns. They don’t
evolve, change, or learn. Mostly, spin glasses just sit there.

In that case, how can they provide insights to those interested
in any of the problems we just mentioned?

There are two broad classes of answer to this question. One
class involves observed spin glass behaviors in the laboratory
that are reminiscent of some of the features discussed above and
that remain poorly understood theoretically. The other involves
theoretical constructs that may in the end have little to do
with real spin glasses in the laboratory (though they may—as
we’ll discuss in chapter 7, this remains a topic of controversy)
but that nevertheless are very suggestive of general features of
complexity. In the first case, we have experiments in search of
a theory; in the second, theory in search of experiments. Both
may have more relevance to complexity studies than to each
other.



12 Introduction

One of the few things that everyone agrees on is that spin
glasses are systems with both quenched disorder and frustration.
We’ve already discussed disorder, which in one form or another
is common in complexity—it’s hard to imagine a complex system
that is perfectly regular in any simple sense. Frustration refers
to the presence of numerous constraints that conflict with each
other so that not all can be simultaneously satisfied. This is clearly
something that should be a universal feature of complex systems,
but it was in the study of spin glasses that the idea first crystallized,
was put on a mathematical footing, and developed.

Disorder and frustration often go together, but they refer to
distinct concepts, and neither implies the other. In many cases—
even that of structural glasses—it’s not so easy to derive crisp
mathematical formulations of these properties, as they apply to
the system at hand. In spin glasses, this can be done readily, and
so they provide a well-defined mathematical laboratory for the
exploration of these concepts and their possible implications and
consequences.

But it wasn’t just disorder and frustration that made spin
glasses so useful. They also exhibited a number of other features
that many complex systems display. Moreover, in spin glasses
these features arise naturally and spontaneously from a minimalist
starting point; they don’t have to be inserted “by hand.” Such
features include the presence of many near-optimal solutions,
which we’ve already seen figures prominently in combinatorial
optimization problems. In the case of spin glasses, these “solu-
tions” refer to low-lying (in energy) metastable (or possibly ther-
modynamic) states. They include the generation of information
(in the Shannon sense) in the selection of particular outcomes
when a spin glass is cooled or an external magnetic field is
removed. They include a novel and exotic hierarchical ordering
of states that spontaneously emerges in at least one nonphysical
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(but important) model of spin glasses. And finally, spin glasses
inspired the development of new mathematical techniques, which
may be applicable to other kinds of complex systems, to describe
and perhaps explain all this.

Consequently, starting in the early 1980s, spin glass concepts,
ideas, and mathematical tools were applied to problems in neural
networks, combinatorial optimization, biological evolution, pro-
tein dynamics and folding, and other topics current in biology,
computer science, mathematics and applied mathematics, and
the social sciences. Some applications were reasonably successful,
others less so. We’ll meet some of them in chapter 6.

On the experimental side, spin glasses show some very peculiar
and interesting nonequilibrium behaviors. Of these, two that are
potentially most relevant for other complex systems are, first, the
presence of a wide range of intrinsic relaxational or equilibrational
timescales, and second, the observation of memory effects: a spin
glass is able to “remember” certain features of its past history in a
rather remarkable way.

Many of these properties (and others that we’ll encounter as
we go along) are widespread throughout complex systems from
many fields. What makes the spin glass so special is that these
properties all seem to arise, in one way or another, from a very
simple-looking energy function that can be written down in one
line. It is deeply surprising that this should be so, and we have
yet to understand what general complexity principles, if any, can
be learned from this. But at the very least, the emergence of all
these properties, and the mathematical techniques that arose to
describe them, have proved useful in a wide range of studies that
go far beyond the original problem of understanding an obscure
class of magnetically disordered systems.

So it may well be the case that in learning something about
spin glasses, you might uncover some new insights and tools to



14 Introduction

help you better understand your own system of interest. And very
possibly, even if you don’t, it might still be entertaining to learn
how so many new, fundamental, and useful concepts can arise
from studying such an initially boring-looking and unpromising
system—which is where we started the discussion.




