
1 ·Eigenvalues 
Eigenvalues are among the most successful tools of applied mathematics.

Here are some of the fields where they are important, with a representative

citation from each. 

acoustics [563] chemistry [722] 
control theory [443] earthquake engineering [151] 
ecology [130] economics [739] 
fluid mechanics [669] functional analysis [630] 
helioseismology [331] magnetohydrodynamics [135] 
Markov chains [582] matrix iterations [338] 
partial differential equations [178] physics of music [279] 
quantum mechanics [666] spectroscopy [349] 
structural analysis [154] vibration analysis [376] 
numerical solution of differential equations [639] 

Figures 1.1 and 1.2 present images of eigenvalues in two quite different 
applications. 

In the simplest context of matrices, the definitions are as follows. Let A 
be an N×N matrix with real or complex coefficients; we write A ∈ �N×N . 
Let v be a nonzero real or complex column vector of length N , and  let  λ 
be a real or complex scalar; we write v ∈ �N and λ ∈ �. Then  v is an 
eigenvector of A, and  λ ∈ � is its corresponding eigenvalue, if  

Av = λv. (1.1) 

(Even if A is real, its eigenvalues are in general complex unless A is self-
adjoint.) The set of all the eigenvalues of A is the spectrum of A, a  
nonempty subset of the complex plane � that we denote by σ(A). The 
spectrum can also be defined as the set of points z ∈ � where the resolvent 
matrix, 

(z −A)−1 , 

does not exist. Throughout this book, z−A is shorthand for zI−A, where  
I is the identity. 

Unlike singular values [414, 776], eigenvalues conventionally make sense 
only for a matrix that is square. This reflects the fact that in applications, 
they are generally used where a matrix is to be compounded iteratively, for 
example, as a power Ak or an exponential etA = I + tA + 2

1 (tA)2 + · · · . 
For most matrices A, there  exists  a  complete set of eigenvectors, a  set  

of N linearly independent vectors v1, . . . ,vN with Avj = λj vj . If  A has 
N distinct eigenvalues, then it is guaranteed to have a complete set of 
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4 I · INTRODUCTION 

Figure 1.1: Spectroscopic image of light from the sun. The black ‘Fraunhofer 
lines’ correspond to various differences of eigenvalues of the Schrödinger operator 
for atoms such as H, Fe, Ca, Na, and Mg that are present in the solar atmosphere. 
Light at these frequencies resonates with frequencies of the transitions between 
energy states in these atoms and is absorbed. Spectroscopic measurements such 
as these are a crucial tool in chemical analysis, not only of astronomical bodies, 
and by making possible the measurement of redshifts of distant galaxies, they 
led to the discovery of the expanding universe. Original image courtesy of the 
Observatories of the Carnegie Institution of Washington. 

eigenvectors, and they are unique up to normalization by scalar factors. 
For any matrix A with a complete set of eigenvectors {vj }, let  V be the 
N ×N matrix whose jth column is vj , a  matrix of eigenvectors. Then  we  
can write all N eigenvalue conditions at once by the matrix equation 

AV = VΛ, (1.2) 

where Λ is the diagonal N × N matrix whose jth diagonal entry is λj . 
Pictorially, 
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Since the eigenvectors vj are linearly independent, V is nonsingular, and 
thus we can multiply (1.2) on the right by V−1 to obtain the factorization 

A = VΛV−1 , (1.3) 

known as an eigenvalue decomposition or a diagonalization of A. In  view  
of this formula, a matrix with a complete set of eigenvectors is said to be 
diagonalizable. An equivalent term is nondefective. 

The eigenvalue decomposition expresses a change of basis to ‘eigen
vector coordinates’, i.e., coefficients in an expansion in eigenvectors. If 
A = VΛV−1, for example, then we have 

V−1(Akx) =  V−1(VΛV−1)kx = Λk(V−1x). (1.4) 
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Figure 1.2: Measured eigenvalues in the complex plane of a minor third A4� 
carillon bell (figure from [418] based on data from [696]). The grid lines show the 
positions of the frequencies corresponding to a minor third chord at 456.8 Hz, 
together with two octaves above the fundamental and one below. Immediately 
after the bell is struck, the ear hears all seven of the frequencies portrayed; a little 
later, the higher four have decayed and mostly the lowest three are heard; still 
later, the lowest mode, the ‘hum’, dominates. The simple rational relationships 
among these frequencies would not hold for arbitrarily shaped bells, but are the 
result of generations of evolution in bell shapes to achieve a pleasing effect. 

Now the product V−1(Akx∑) is equal to the vector c of coefficients in an 
expansion Akx = Vc = cj vj of A

kx as a linear combination of the 
eigenvectors {vj }, and similarly, V−1x is the vector of coefficients in an 
expansion of x. Thus, (1.4) asserts that to compute Akx, we can expand x 
in the basis of eigenvectors, apply the diagonal matrix Λk, and interpret the 
result as the coefficients for another expansion in the basis of eigenvectors. 
In other words, the change of basis has rendered the problem diagonal and 
hence trivial. For etAx, similarly, we have 

V−1(etAx) =  V−1(VetΛV−1)x = etΛ(V−1x), (1.5) 

so diagonalization makes this problem trivial too, and likewise for other 
functions f(A). 

So far we have taken A to be a matrix, but eigenvalues are also im
portant when A is a more general linear operator such as an infinite ma
trix, a differential operator, or an integral operator. Indeed, eigenvalue 
problems for matrices often come about through discretization of linear 
operators. The spectrum σ(A) of a closed operator A defined in a Banach 
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(or Hilbert) space is defined as the set of numbers z ∈ � for which the 
resolvent (z − A)−1 does not exist as a bounded operator defined on the 
whole space (§4). It can be any closed set in the complex plane, including 
the empty set. Eigenvalues and eigenvectors (also called eigenfunctions or 
eigenmodes) are still defined by (1.1), but among the new features that 
arise in the operator case is the phenomenon that not every z ∈ σ(A) is  
necessarily an eigenvalue. This book avoids fine points of spectral theory 
wherever possible, for the main issues to be investigated are orthogonal to 
the differences between matrices and operators. In particular, the distinc
tion between spectra and pseudospectra has little to do with the distinction 
between point and continuous spectra. In certain contexts, of course, it will 
be necessary for us to be more precise. 

This book is about the limitations of eigenvalues, and alternatives to 
them. In the remainder of this introductory section, let us accordingly con
sider the question, What are eigenvalues useful for? Why are eigenvalues 
and eigenfunctions—more generally, spectra and spectral theory—among 
the standard tools of applied mathematics? Various answers to these ques
tions appear throughout this volume, but here, we shall make our best 
attempt to summarize them in a systematic way. 

We begin with a one-paragraph history [96, 208, 721]. It is not too 
great an oversimplification to say that a major part of eigenvalue anal
ysis originated early in the nineteenth century with Fourier’s solution of 
the heat equation by series expansions. Fourier’s ideas were extended by 
Poisson, and other highlights of the nineteenth century include Sturm and 
Liouville’s treatment of more general second-order differential equations in 
the 1830s; Sylvester and Cayley’s diagonalization of symmetric matrices in 
the 1850s (the origins of this idea go back to Cauchy, Jacobi, Lagrange, 
Euler, Fermat, and Descartes); Weber and Schwarz’s treatment of a vi
brating membrane in 1869 and 1885 (whose origins in vibrating strings go 
back to D. Bernoulli, Euler, d’Alembert, . . . ,  Pythagoras); Lord Rayleigh’s 
treatise The Theory of Sound in 1877 [618]; and further developments by 
Poincaré around 1890. By 1900, eigenvalues and eigenfunction expansions 
were well-known, especially in the context of differential equations. The 
new century brought the mathematical theory of linear operators due to 
Fredholm, Hilbert, Schmidt, von Neumann, and others; the terms ‘eigen
value’ and ‘spectral theory’ appear to have been coined by Hilbert. The 
influential book by Courant and Hilbert, first published in 1924, surveyed 
a large amount of material concerning eigenvalues of differential equations 
and vibration problems [168]. Just two years later came the explosive ideas 
of quantum mechanics, which in a short time, in the hands of Heisenberg, 
Jordan, Schrödinger, Dirac, and others, moved matrices and operators to 
center stage of the scientific world. Quantum ‘matrix mechanics’ revealed 
that energy states of atoms and molecules could be viewed as eigenfunctions 
of a Schrödinger operator, thereby explaining Figure 1.1, the periodic ta
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ble of the elements, and countless other scientific observations besides [384], 
and from that time on, every mathematical scientist has known the basics 
of matrices, operators, eigenvalues, and eigenfunctions. 

What exactly do eigenvalues offer that makes them useful for so many 
problems? We believe there are three principal answers to this question, 
more than one of which may be important in a particular application. 

1. Diagonalization and separation of variables: use of the eigenfunctions 
as a basis. One thing eigenvalues may accomplish is the decoupling, as in 
(1.3)–(1.5), of a problem involving vectors or functions into a collection 
of problems involving scalars, which may make subsequent computations 
easier. For example, in Fourier’s problem of heat conduction in a solid 
bar with zero temperature at both ends, the eigenmodes are sine waves 
that decay independently as a function of time. If an arbitrary initial 
temperature distribution is expanded as a sum of these sine waves, then 
the solution at a later time can be calculated by summing the components 
of the expansion. 

2. Resonance: heightened response to selected inputs. Diagonalization 
is an algorithmic idea; the other uses of eigenvalues are more physical. One 
is the analysis of the phenomenon of resonance, perhaps most familiar in 
the context of vibrating strings, drums, and mechanical structures. Any 
visitor to science museums has seen demonstrations showing that certain 
systems respond preferentially to vibrations at special frequencies. These 
frequencies are the eigenvalues of the linear or linearized operator that gov
erns the system in question, and the form of the response is associated with 
the corresponding eigenfunctions. Examples of resonance are familiar: One 
thinks of soldiers breaking step as they cross bridges; of the less fortunate 
Tacoma Narrows Bridge in the 1940s, whose collapse was initiated by a 
wind-induced flow oscillation too close to a structural eigenfrequency; of 
buildings and their response to the vibrations of earthquakes—an appli
cation where eigenvalues are written into legal codes; of that old cartoon 
standby, the soprano whose high E shatters windows. In other examples 
resonance is desired rather than feared: examples include AM radio, where 
the signal from a far-off station is selected from a sea of background noise 
by a finely tuned resonant circuit, and the cochlea of the human ear, whose 
basilar membrane resonates preferentially in different locations according 
to the frequency of the sound input and thus in a sense tunes in all stations 
at once. These last two examples illustrate the wide range of complexity 
in applications of eigenvalue ideas, for the radio problem is straightforward 
and almost perfectly linear, whereas the ear is a complicated nonlinear sys
tem, not yet fully understood, for which eigenmodes are only a crude first 
step. 

3. Asymptotics and stability: dominant response to general inputs. A 
related application of eigenvalues is to questions of the form, What will 
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happen as time elapses (or in the extreme, t → ∞) to a system that has  
experienced some more or less random disturbance? Fourier’s heat problem 
again affords an example: Whatever the shape of the initial temperature 
distribution, the higher sine waves decay faster than the lowest one, and 
therefore almost any initial distribution will eventually come to look like 
the half-wavelength sine with zeros just at the two ends of the interval. 
Similarly, what makes a church bell as in Figure 1.2 chime musically? As 
the clapper strikes, all frequencies are excited, but differential decay rates 
soon filter out all but a few dominant ones, and the result is a pleasing 
sound. Kettledrums operate on the same principle, as do Markov chains in 
probability theory. Sometimes the crucial issue is a question of stability: 
Are there modes that grow rather than decay with t? For example, in fluid 
mechanics a standard technique to determine whether small perturbations 
to a laminar flow will be amplified into large ones—which may then trig
ger the onset of turbulence—is to calculate whether the eigenvalues of the 
system all lie in the left half of the complex plane. (We shall see in §20 
that this technique is not always successful.) Similar questions arise in 
control theory and in numerical analysis, where time is discrete and sta
bility depends on eigenvalues being less than 1 in modulus. Problems of 
convergence of matrix iterations in numerical analysis are also related, the 
convergence rate being determined by how close certain eigenvalues are to 
zero. 

Principles 1, 2, and 3 account for most applications of eigenvalues. 
(Sometimes the latter two are hard to distinguish, as, for example, in 
the operation of bowed or blown musical instruments. The significance 
of eigenvalues in quantum mechanics also may have special features, not 
well captured by 1–3.) In view of the ubiquity of vibrations, oscillations, 
and linear or approximately linear processes in the physical world, they 
amply justify the great attention that has been given to eigenvalues over 
the years. 

And we think there is a fourth reason, too, for the success of eigenvalues. 

4. They give a matrix a personality. We humans like images; our brains 
are specially adapted to interpret them. Eigenvalues enable us to take the 
abstraction of a matrix or linear operator, for whose analysis we possess 
no hardwired talent, and portray it as a picture. 

This book is about a class of problems for which eigenvalue methods 
may fail: problems involving matrices or operators for which the matrix 
V−1 of (1.3)–(1.5), if it exists, contains very large entries: 

‖V−1‖ � 1. (1.6) 

(This often turns out to mean exponentially large with respect to a param
eter.) This formulation of the matter assumes that the matrix V itself is in 
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some sense reasonably scaled, with ‖V‖ roughly of order 1. If no assump
tions are made about the scaling of ‖V‖, then (1.6) should be replaced by 
a statement about the condition number of V in the norm ‖ · ‖, 

‖V‖‖V−1‖ � 1, (1.7) 

and to be still more precise we should require that (1.7) hold not just for 
some eigenvector matrix V, whose eigenvector columns might be badly 
scaled relative to one another, but for any eigenvector matrix V. For  
operators as opposed to matrices, a suitable generalization of (1.7) can be 
applied in some cases, but not all. 

The conditions (1.6) and (1.7) depend upon the choice of norm ‖ · ‖. 
Though sometimes it is essential to consider other possibilities (see, e.g., 
§56 and §57), most of our examples will be based on the use of the 2-norm, 
defined by ‖x‖2 = (  |xj |2)1/2 for a vector x and then by 

‖Ax‖2‖A‖2 = max  (1.8) 
x ‖x‖2 

for a matrix A. This choice of norm corresponds mathematically to formu
lation in a Hilbert space and physically to consideration of energy defined 
by a sum of squares, and in this important special case, (1.7) amounts to 
the condition that the eigenvectors of A, if they exist, are far from orthog
onal. At the other extreme is a normal matrix, one that has a complete 
set of orthogonal eigenvectors; real symmetric and Hermitian matrices fall 
in this category. In this case, if each vj is normalized by ‖vj ‖2 = 1,  then  
V is a unitary matrix (in the real case we say orthogonal), with V−1 = V∗ 

(V∗ denotes the conjugate transpose) and ‖V‖2 = ‖V−1‖2 = 1.  Thus  for  
‖ · ‖ = ‖ · ‖2, (1.7) is a statement that A is in some sense far from normal. 
In this norm, it is the nonnormal matrices for which eigenvalue analysis 
may fail, and in this book, starting with the subtitle on the cover, we often 
speak of problems that are ‘nonnormal’ or ‘far from normal’ when a more 
careful statement would refer to a more general condition, such as (1.7). 

The majority of the familiar applications of eigenvalue analysis involve 
matrices or operators that are normal or close to normal, having eigenfunc
tions orthogonal or nearly so. Among the examples mentioned so far, all 
of the physical ones are in this category except certain problems of fluid 
mechanics. The familiar mechanical oscillations are governed by normal 
operators, for example, and so are the oscillations of quantum mechanics, 
at least in their standard formulation. As a consequence, our intuition 
about eigenvalues has been formed by the normal case. Two centuries of 
successes have generated confidence that the eigenvalue idea is both pow
erful in practice and fundamental in concept. It has not always been noted 
that as most of these successes involve problems governed by normal or 
near-normal operators, our grounds for confidence in the nonnormal case 
are less solid. 
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10 I · INTRODUCTION 

With this in mind, we shall now briefly indicate what can go wrong 
with 1, 2, and 3 in certain applications. 

First, consider 2. If a linear operator is normal, then the degree of 
resonant amplification that may occur in response to an input at frequency 
ω is equal to the inverse of the distance in the complex plane between 
ω and the nearest eigenvalue. (This formula can be found in first-year 
physics textbooks, usually without the word ‘eigenvalue’.) For a nonnormal 
operator, however, the resonant amplification may be orders of magnitude 
greater. The resonances of a nonnormal system are not determined by the 
eigenvalues alone. This phenomenon is at the heart of the topic known as 
‘receptivity’ in fluid mechanics (§23). 

Next, consider 3. It is true that for a purely linear, constant-coefficient, 
homogeneous problem, eigenvalues govern the asymptotic behavior as t → 
∞. If the problem is normal, this statement is robust; the eigenvalues also 
have relevance to short-time or transient behavior, and moreover, their 
influence tends to persist if the problem is altered in small ways. If the 
problem is far from normal, however, conclusions based on eigenvalues are 
in general not robust. First, there may be a long transient that looks quite 
different from the asymptote and has no connection to the eigenvalues. 
Second, even the asymptote may change beyond recognition if the problem 
is modified slightly. Eigenvalues do not always govern the transient behav
ior of a nonnormal system, nor the asymptotic behavior in the presence of 
nonlinear terms, variable coefficients, lower order terms, inhomogeneous 
forcing data, or other complications. Few applied problems are free of all 
these effects. For those that are, it is rare that one is interested so purely in 
the limit t → ∞  as one may at first imagine. These issues are at the heart 
of convergence and stability investigations in numerical analysis, and we 
discuss them, for example, in Parts VI and VII. For a high-level schema, 
see Figure 33.3. 

This brings us to 1. Unlike 2 and 3, the algorithmic idea of diagonaliza
tion is not in general invalidated if ‖V‖ ‖V−1‖ is large (although in extreme 
cases there may be difficulties caused by rounding errors on a computer). 
On the other hand, there is a different difficulty that sometimes makes di
agonalization less useful than one might expect, even for normal problems. 
In practice, for differential or other operators one works with truncated 
expansions; an infinite series is approximated by finite sum. The difficulty 
that arises sometimes is that the choice of the basis of eigenfunctions for 
such an expansion may necessitate taking an unacceptably large number 
of terms in the expansion to achieve the required accuracy. Eigenfunc
tion expansions may be exceedingly inefficient. This fact was publicized by 
Orszag around 1970 in the context of spectral methods for the numerical 
solution of differential equations [588, 775]. Spectral methods, by con
trast, are based on expansions in functions that have nothing to do with 
the eigenfunctions of the problem at hand, but which may converge ge
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ometrically, where an expansion in eigenfunctions converges only linearly. 
Thirty Chebyshev polynomials may resolve a problem as well as a thousand 
eigenfunctions. An example is considered in §59. 

What about 4, a matrix or operator’s personality? In the highly non-
normal case, vivid though the image may be, the location of the eigenvalues 
may be as fragile an indicator of underlying character as the hair color of 
a Hollywood actor. We shall see that pseudospectra provide equally com
pelling images that may capture the spirit underneath more robustly. 

In summary, eigenvalues and eigenfunctions have a distinguished his
tory of application throughout the mathematical sciences; we could not get 
along without them. Their clearest successes, however, are associated with 
problems that involve well-behaved systems of eigenvectors, which in most 
contexts means matrices or operators that are normal or nearly so. This 
class of problems encompasses the majority of applications, but not all. 
For nonnormal problems, the record is less clear, and even the conceptual 
significance of eigenvalues is open to question. 
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