Contents

Foreword		vii
Prei	Preface	
Chapter 1. L^p Spaces and Banach Spaces		1
1	L^p spaces	2
	1.1 The Hölder and Minkowski inequalities	3
	1.2 Completeness of L^p	5
	1.3 Further remarks	7
2	The case $p = \infty$	7
3	Banach spaces	9
	3.1 Examples	9
	3.2 Linear functionals and the dual of a Banach space	11
4	The dual space of L^p when $1 \le p < \infty$	13
5	More about linear functionals	16
	5.1 Separation of convex sets	16
	5.2 The Hahn-Banach Theorem	20
	5.3 Some consequences	21
	5.4 The problem of measure	23
6	Complex L^p and Banach spaces	27
7	Appendix: The dual of $C(X)$	28
	7.1 The case of positive linear functionals	29
	7.2 The main result	32
	7.3 An extension	33
8	Exercises	34
9	Problems	43
Cha	pter 2. L^p Spaces in Harmonic Analysis	47
1	Early Motivations	48
2	The Riesz interpolation theorem	52
	2.1 Some examples	57
3	The L^p theory of the Hilbert transform	61
	3.1 The L^2 formalism	61
	3.2 The L^p theorem	64
	3.3 Proof of Theorem 3.2	66
4	The maximal function and weak-type estimates	70
	4.1 The L^p inequality	71

5	The Hardy space \mathbf{H}_r^1	73
	5.1 Atomic decomposition of H_r^1	74
	5.2 An alternative definition of H_r^1	81
	5.3 Application to the Hilbert transform	82
6	The space H_r^1 and maximal functions	84
	6.1 The space BMO	86
7	Exercises	90
8	Problems	94
Cha	pter 3. Distributions: Generalized Functions	98
1	Elementary properties	99
	1.1 Definitions	100
	1.2 Operations on distributions	102
	1.3 Supports of distributions	104
	1.4 Tempered distributions	105
	1.5 Fourier transform	107
	1.6 Distributions with point supports	110
2	Important examples of distributions	111
	2.1 The Hilbert transform and $pv(\frac{1}{x})$	111
	2.2 Homogeneous distributions	115
	2.3 Fundamental solutions	125
	2.4 Fundamental solution to general partial differential	
	equations with constant coefficients	129
	2.5 Parametrices and regularity for elliptic equations	131
3	Calderón-Zygmund distributions and L^p estimates	134
	3.1 Defining properties	134
	3.2 The L^p theory	138
4	Exercises	145
5	Problems	153
Cha	pter 4. Applications of the Baire Category Theorem	157
1	The Baire category theorem	158
	1.1 Continuity of the limit of a sequence of continuous functions	160
	1.2 Continuous functions that are nowhere differentiable	163
2	The uniform boundedness principle	166
	2.1 Divergence of Fourier series	167
3	The open mapping theorem	170
	3.1 Decay of Fourier coefficients of L^1 -functions	173
4	The closed graph theorem	174
	4.1 Grothendieck's theorem on closed subspaces of L^p	174

xii

Copyrighted Material

CONTENTS		xiii
5	Besicovitch sets	176
6	Exercises	181
7	Problems	185
Cha	pter 5. Rudiments of Probability Theory	188
1	Bernoulli trials	189
	1.1 Coin flips	189
	1.2 The case $N = \infty$	191
	1.3 Behavior of S_N as $N \to \infty$, first results	194
	1.4 Central limit theorem	195
	1.5 Statement and proof of the theorem	197
	1.6 Random series	199
	1.7 Random Fourier series	202
	1.8 Bernoulli trials	204
2	Sums of independent random variables	205
	2.1 Law of large numbers and ergodic theorem	205
	2.2 The role of martingales	208
	2.3 The zero-one law	215
	2.4 The central limit theorem	215
	2.5 Random variables with values in \mathbb{R}^d	220
	2.6 Random walks	222
3	Exercises	227
4	Problems	235
Cha	pter 6. An Introduction to Brownian Motion	238
1	The Framework	239
2	Technical Preliminaries	241
3	Construction of Brownian motion	246
4	Some further properties of Brownian motion	251
5	Stopping times and the strong Markov property	253
	5.1 Stopping times and the Blumenthal zero-one law	254
	5.2 The strong Markov property	258
	5.3 Other forms of the strong Markov Property	260
6	Solution of the Dirichlet problem	264
7	Exercises	268
8	Problems	273
Cha	pter 7. A Glimpse into Several Complex Variables	276
1	Elementary properties	276
2	Hartogs' phenomenon: an example	280

Copyrighted Material

3	Hartogs' theorem: the inhomogeneous Cauchy-Riemann	<u> </u>
4	A boundary version: the tangential Cauchy Riemann equa	200
т	tions	288
5	The Levi form	293
6	A maximum principle	296
7	Approximation and extension theorems	299
8	Appendix: The upper half-space	307
	8.1 Hardy space	308
	8.2 Cauchy integral	311
	8.3 Non-solvability	313
9	Exercises	314
10	Problems	319
Cha	pter 8. Oscillatory Integrals in Fourier Analysis	321
1	An illustration	322
2	Oscillatory integrals	325
3	Fourier transform of surface-carried measures	332
4	Return to the averaging operator	337
5	Restriction theorems	343
	5.1 Radial functions	343
	5.2 The problem	345
	5.3 The theorem	345
6	Application to some dispersion equations	348
	6.1 The Schrödinger equation	348
	6.2 Another dispersion equation	352
	6.3 The non-homogeneous Schrödinger equation	355
	6.4 A critical non-linear dispersion equation	359
7	A look back at the Radon transform	363
	7.1 A variant of the Radon transform	363
	7.2 Rotational curvature	365
	7.3 Oscillatory integrals	367
	7.4 Dyadic decomposition	370
	7.5 Almost-orthogonal sums	373
	7.6 Proof of Theorem 7.1	374
8	Counting lattice points	376
	8.1 Averages of arithmetic functions	377
	8.2 Poisson summation formula	379
	8.3 Hyperbolic measure	384
	8.4 Fourier transforms	389
	8.5 A summation formula	392

Copyrighted Material

CONTENTS	XV
9 Exercises 10 Problems	$398 \\ 405$
Notes and References	
Bibliography	
Symbol Glossary	
Index	