Contents

Preface ix

SECTION I: BACKGROUND

Chapter 1 Introduction to Materials Engineering 3
1. Nature Builds with Polymers 4
2. The Vast Majority of Natural Materials Are Fiber-Reinforced Composites 5
3. Biomaterials Exhibit Hierarchical Complexity of Structure 5
4. Biomaterials Are Remarkably Diverse 5
5. The Quality of Mechanical Design in Animals 8

Chapter 2 Principles of Materials Engineering and Mechanical Testing 10
1. Solids—Reversible Deformation and Ideal Elasticity 10
2. Stress-Strain Curves 12
3. Ultimate Properties 13
4. Poisson’s Ratio and the Relationship between Elastic Moduli 18
5. Fluids, Flow, and Viscosity 20

Chapter 3 Viscoelasticity 22
1. Hysteresis and Resilience 22
2. Creep and Stress Relaxation 24
3. Viscoelastic Models 25
4. Time-Temperature Superposition 31
5. Dynamic Mechanical Testing 33

SECTION II: THE STRUCTURAL BASIS FOR MATERIAL PROPERTIES

Chapter 4 The Structural Origin of Elasticity and Strength 43
1. Bond Energy Elasticity 43
2. The Theoretical Strength of Materials 46

For general queries, contact webmaster@press.princeton.edu
Chapter 5 Fracture Mechanics
1. Stress Concentrations 50
2. The Work of Fracture 50
3. The Realized Strength of Materials 53
4. Fracture Toughness 56

Chapter 6 The Molecular Origins of Soft Elasticity
1. Flexible Linear Polymers 59
2. The Thermodynamics of Random-Coiled Molecules 61
3. Entropy Elasticity 62
4. The Effects of Cross-Links 66
5. Experimental Measurements 70

Chapter 7 The Molecular Origins of Viscoelasticity
1. Diffusion and Entanglement 74
2. Viscosity and Chain Length 76
3. The Glass Transition 79
4. An Example: Elastin 81

Chapter 8 The Design of Composite Materials
1. Fiber and Matrix 84
2. The Effects of Fiber Angle 86
3. Reinforcement Efficiency 91
4. The Strength of Composite Materials 93

SECTION III: THE MECHANICAL DESIGN OF TENSILE MATERIALS

Chapter 9 The Structural Design of Collagen: Tendons and Ligaments
1. Crystalline Polymers and Tensile Fibers 103
2. The Evolution of Collagen 107
3. Tropocollagen, the Collagen Molecule 107
4. The Assembly of Collagen Fibrils 112
5. The Structural Organization of Collagen Fibers in Tendons and Ligaments 118
6. Mechanical Properties: Stiffness, Strength, Resilience, and Toughness 125
7. The Structural Design of Tendons and Their Fatigue Lifetime 133
8. The Nanomechanics of Tendons and Ligaments 138
9. Echinoderm Ligaments and Mutable Connective Tissues 144

Chapter 10 The Structural Design of Spider Silks
1. The Functional Diversity of Spider Silks 152
2. The Mechanical Properties of Spider Silks 164
3. The Network Structure of Major Ampullate Silks 170
4. Silk Formation in the Gland/Spinneret Complex 174
5. The Functional Design of Spider Draglines 180

SECTION IV: THE MECHANICAL DESIGN OF RIGID MATERIALS

Chapter 11 The Structural Design of Bone 191
1. The Structural Hierarchy of Bone 192
2. Bone Cells 200
3. The Composite Structure of Bone Material 201
4. Nanoscale Composite Models for Bone 206
5. The Mechanical Properties of Bone 214
6. The Adaptations of Bone 225

Chapter 12 The Structural Design of Insect Cuticle 231
1. The Evolution of Insect Cuticle 231
2. The Crystal Structure of Chitin and Cellulose 233
3. The Structure of Chitin Microfibrils 236
4. The Stiffness and Strength of Chitin Microfibrils 238
5. The Organization of Chitin Microfibrils in the Cuticle Composite 239
6. The Protein Matrix and Its Sclerotization 243
7. The Mechanical Properties of Rigid Cuticle 249
8. Hardness Testing and Nanoindentation Studies 260
9. The Structural Design of Soft Cuticles 263
10. The Functional Consequences of Short-Fiber Composites in Insect Cuticle 271

SECTION V: THE MECHANICAL DESIGN OF PLIANT BIOMATERIALS

Chapter 13 The Evolutionary Origins of Pliant Biomaterials 277
1. The Evolution of Collagen Fibrils 277
2. Sea Anemone Anatomy and Function 280
3. Mesoglea: Viscoelastic Properties 281
4. Mesoglea: A Composite Model 284
5. Matrix Chemistry 287

Chapter 14 Rubberlike Proteins 290
1. Microfibrillar Elastomers 290
2. The Amino-Acid Composition of Protein Rubbers 298
3. The Amino-Acid Sequence and Cross-Linking of Protein Rubbers 301
4. The Network Structure and Mechanical Properties of Protein Rubbers 304
Contents

5. The Dynamic Mechanical Properties and Fatigue of Rubberlike Proteins 308

Chapter 15 Pliant Matrix Materials and the Design of Pliant Composites 314
1. The Mechanical Design of Mucus 314
2. The Mechanical Design of Cartilage 319
3. The Mechanical Design of Vertebrate Skin 327
4. The Mechanical Design of Vertebrate Arteries 337

SECTION VI: CONCLUDING COMMENTS

Chapter 16 Final Thoughts 353

List of Symbols 359

Bibliography 363

Index 375