Contents

Preface			xvii
Acknowle	edgment	s	xxiii
Chapter	1 Intro	duction	1
1.1	The R	ainbow Directory	3
	1.1.1	The Multifaceted Rainbow	3
1.2	A Ma	thematical Taste of Things to Come	5
	1.2.1	Rays	5
	1.2.2	Waves	6
	1.2.3	Scattering (Classical)	7
	1.2.4	Scattering (Semiclassical)	9
	1.2.5	Caustics and Diffraction Catastrophes	11
PART I.	RAYS		15
Chapter	2 Intro	duction to the "Physics" of Rays	17
2.1	What	Is a Ray?	17
	2.1.1	Some Mathematical Definitions	18
	2.1.2	Geometric Wavefronts	19
	2.1.3	Fermat's Principle	21
	2.1.4	The Intensity Law	21
		Heuristic Derivation of Snell's Laws	23
		Generalization	24
2.2	Geom	etric and Other Proofs of Snell's Laws of Reflection	
	and R	efraction	25
	2.2.1		25
	2.2.2	The Law of Refraction	26
		A Wave-Theoretic Proof	28
	2.2.4	An Algebraic Proof	29
		duction to the Mathematics of Rays	33
3.1	-	ground	33
3.2	The N	Method of Characteristics	34

viii •	CONTENTS				
3.3	Introduction to Hamilton-Jacobi Theory	37			
	3.3.1 Hamilton's Principle	39			
	3.3.2 Rays and Characteristics	39			
	3.3.3 The Optical Path Length Revisited	43			
3.4	Ray Differential Geometry and the Eikonal Equation Again	46			
	3.4.1 The Mirage Theorem for Horizontally Stratified Media	49			
	3.4.2 A Return to Spherically Symmetric Media:				
	n(r) Continuous	51			
3.5	Dispersion Relations: A Wave-Ray Connection	54			
	3.5.1 Fourier Transforms and Dispersion Relations	55			
	3.5.2 The Bottom Line	56			
	3.5.3 Applications to Atmospheric Waves	61			
3.6	General Solution of the Linear Wave Equation:				
	Some Asymptotics	64			
	3.6.1 Stationary Phase	64			
	3.6.2 Asymptotics for Oscillatory Sources: Wavenumber				
	Surfaces	65			
3.7	Rays and Waves in a Slowly Varying Environment	70			
	3.7.1 Some Consequences	71			
	3.7.2 Wavepackets and the Group Speed Revisited	75			
Chapter	4 Ray Optics: The Classical Rainbow	76			
4.1	Physical Features and Historical Details: A Summary	76			
4.2	Ray Theory of the Rainbow: Elementary Mathematical				
	Considerations	78			
	4.2.1 Some Numerical Values	84			
	4.2.2 Polarization of the Rainbow	85			
	4.2.3 The Divergence Problem	87			
4.3	Related Topics in Meteorological Optics	89			
	4.3.1 The Glory	89			
	4.3.2 Coronas (Simplified)	92			
	4.3.3 Rayleigh Scattering—a Dimensional Analysis Argument	93			
Chapter	5 An Improvement over Ray Optics: Airy's Rainbow	95			
5.1	The Airy Approximation	95			
	5.1.1 Some Ray Prerequisites	95			
	5.1.2 The Airy Wavefront	100			
	5.1.3 How Are Colors Distributed in the Airy Rainbow?	104			
	5.1.4 The Airy Wavefront: A Derivation for Arbitrary p	105			
Chapter	6 Diffraction Catastrophes	113			
6.1	Basic Geometry of the Fold and Cusp Catastrophes	114			
	6.1.1 The Fold	114			
	6.1.2 The Cusp	115			
6.2	A Better Approximation	122			
	6.2.1 The Fresnel Integrals	124			

	CONTENTS	* 1X
6.3	The Fold Diffraction Catastrophe	126
	6.3.1 The Rainbow as a Fold Catastrophe	128
6.4	Caustics: The Airy Integral in the Complex Plane	130
	6.4.1 The Nature of $Ai(X)$	133
Chapter 7	Introduction to the WKB(J) Approximation: All Things Airy	137
7.1	Overview	137
7.1	7.1.1 Elimination of the First Derivative Term	139
	7.1.2 The Liouville Transformation	141
	7.1.3 The One-Dimensional Schrödinger Equation	143
	7.1.4 Physical Interpretation of the WKB(J) Approximation	144
	7.1.5 The WKB(J) Connection Formulas	145
	7.1.6 Application to a Potential Well	148
7.2	Technical Details	149
7.3	Matching Across a Turning Point	152
7.4	A Little More about Airy Functions	153
	7.4.1 Relation to Bessel Functions	154
	7.4.2 The Airy Integral and Related Topics	156
	7.4.3 Related Integrals	159
Chapter 8	Island Rays	162
8.1	Straight and Parallel Depth Contours	163
	8.1.1 Plane Wave Incident on a Ridge	164
	8.1.2 Wave Trapping on a Ridge	166
8.2	Circular Depth Contours	167
8.3	Constant Phase Lines	169
	8.3.1 Case 1	169
	8.3.2 Case 2	170
	8.3.3 Case 3	170
8.4	Waves and Currents	170
Chapter 9	Seismic Rays	173
9.1	Seismic Ray Equations	173
9.2	Ray Propagation in a Spherical Earth	175
	9.2.1 A Horizontally Stratified Earth	178
	9.2.2 The Wiechert-Herglotz Inversion	179
	9.2.3 Further Properties of <i>X</i> in the Horizontally Stratified	
	Case	181
PART II	WAVES	187
	O Elastic Waves	
		189
10.1	Basic Notation	190
10.2	Plane Wave Solutions	193

x • (CONTENTS	
10.3	Surface waves	195
10.4		198
Chapte	11 Surface Gravity Waves	200
11.1	The Basic Fluid Equations	201
11.2	_	203
	11.2.1 Deep Water Waves	203
	11.2.2 Shallow Water Waves	204
	11.2.3 Instability	205
	11.2.4 Group Speed Again	210
	11.2.5 Wavepackets	212
11.3	1	214
	11.3.1 How Does Dispersion Affect the Wave Pattern	
	Produced by a Moving Object?	214
	11.3.2 Whitham's Ship Wave Analysis	218
	11.3.3 A Geometric Approach to Ship Waves and Wakes	221
11.4	11.3.4 Ship Waves in Shallow Water	227
11.4	11	229
	11.4.1 Long Waves	229
11.5	11.4.2 Short Waves	230
11.5	Further Analysis for Surface Gravity Waves	231
Chapte	12 Ocean Acoustics	237
12.1	Ocean Acoustic Waveguides	237
	12.1.1 The Governing Equation	237
	12.1.2 Low Velocity Central Layer	239
	12.1.3 Leaky Modes	240
12.2	3 1 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	241
	12.2.1 An Eigenfunction Expansion	242
	12.2.2 Poles	245
12.3	,	247
12.4	1	250
	12.4.1 Positive Energy States	250
	12.4.2 Bound States	253
Chapte	r 13 Tsunamis	255
13.1	Mathematical Model of Tsunami Propagation (Transient Waves)	255
13.2	The Boundary-Value Problem	257
13.3	• •	250
	of the Free Surface	258
	13.3.1 A Digression: Surface Waves on Deep Water (Again)	263 265
	13.3.2 How Fast Does the Wave Energy Propagate?13.3.3 Kinematics Again	265
13.4	Leading Waves Due to a Transient Disturbance	268
13.4	e e	200
15.5	of the Seafloor	270

	CONTENTS	 xi
Chapter	14 Atmospheric Waves	273
14.1	Governing Linearized Equations	274
14.2	A Mathematical Model of Lee/Mountain Waves over	
	an Isolated Mountain Ridge	285
	14.2.1 Basic Equations and Solutions	286
	14.2.2 An Isolated Ridge	288
	14.2.3 Trapped Lee Waves	290
14.3	Billow Clouds, Wind Shear, and Howard's Semicircle Theorem	292
14.4	The Taylor-Goldstein Equation	296
Part III	CLASSICAL SCATTERING	299
O I .	45 Th. Ol. 1 10	201
Chapter	15 The Classical Connection	301
15.1	Lagrangians, Action, and Hamiltonians	301
15.2	The Classical Wave Equation	304
15.3	Classical Scattering: Scattering Angles and Cross Sections	308
	15.3.1 Overview	308
	15.3.2 The Classical Inverse Scattering Problem	313
Chapter	16 Gravitational Scattering	316
16.1	Planetary Orbits: Scattering by a Gravitational Field	317
	16.1.1 Repulsive Case: $k > 0$	318
	16.1.2 Attractive Case: $k < 0$	319
	16.1.3 The Orbits	319
16.2	The Hamilton-Jacobi Equation for a Central Potential	325
	16.2.1 The Kepler Problem Revisited	326
	16.2.2 Generalizations	327
	16.2.3 Hard Sphere Scattering	328
	16.2.4 Rutherford Scattering	329
Chapter	17 Scattering of Surface Gravity Waves by Islands, Reefs,	
	Barriers	332
17.1	Trapped Waves	333
17.1	The Scattering Matrix $S(\alpha)$	334
17.3	Trapped Modes: Imaginary Poles of $S(\alpha)$	337
17.4	Properties of $S(\alpha)$ for $\alpha \in \mathbb{R}$	338
17.5	Submerged Circular Islands	340
17.6	Edge Waves on a Sloping Beach	342
17.0	17.6.1 One-Dimensional Edge Waves on a Constant Slope	345
	17.6.2 Wave Amplication by a Sloping Beach	345
	r	

• •		
XII	•	CONTENTS

Chapter ⁻	18 Acoustic Scattering	348
18.1	Scattering by a Cylinder	350
18.2	Time-Averaged Energy Flux: A Little Bit of Physics	352
18.3	The Impenetrable Sphere	354
	18.3.1 Introduction: Spherically Symmetric Geometry	354
	18.3.2 The Scattering Amplitude Revisited	356
	18.3.3 The Optical Theorem	358
	18.3.4 The Sommerfeld Radiation Condition	358
18.4	Rigid Sphere: Small ka Approximation	359
18.5	Acoustic Radiation from a Rigid Pulsating Sphere	361
18.6	The Sound of Mountain Streams	364
	18.6.1 Bubble Collapse	367
	18.6.2 Playing with Mathematical Bubbles	369
Chapter ¹	19 Electromagnetic Scattering: The Mie Solution	371
19.1	Maxwell's Equations of Electromagnetic Theory	378
19.2	· · · · · · · · · · · · · · · · · · ·	379
19.3	The Lorentz-Mie solution	383
	19.3.1 Construction of the Solution	386
	19.3.2 The Rayleigh Scattering Limit: A Condensed Derivation	392
	19.3.3 The Radiation Field Generated by a Hertzian Dipole	394
Chapter 2	20 Diffraction of Plane Electromagnetic Waves by a Cylinder	397
20.1	Electric Polarization	398
20.2	More about Classical Diffraction	406
	20.2.1 Huygen's Principle	406
	20.2.2 The Kirchhoff-Huygens Diffraction Integral	406
	20.2.3 Derivation of the Generalized Airy Diffraction Pattern	409
PART IV	SEMICLASSICAL SCATTERING	413
Chapter 2	21 The Classical-to-Semiclassical Connection	415
21.1	Introduction: Classical and Semiclassical Domains	415
21.2	Introduction: The Semiclassical Formulation	416
	21.2.1 The Total Scattering Cross Section	418
	21.2.2 Classical Wave Connections	419
21.3	The Scalar Wave Equation	420
	21.3.1 Separation of Variables	420
	21.3.2 Bauer's Expansion Again	422
21.4	The Radial Equation: Further Details	423
21.5	Some Examples	426
	21.5.1 Scattering by a One-Dimensional Potential Barrier	426
	21.5.2 The Radially Symmetric Problem: Phase Shifts	
	and the Potential Well	428

	CONTENTS	•	xiii
Chapter 2	22 The WKB(J) Approximation Revisited		434
22.1	The Connection Formulas revisited: An Alternative Approach		435
22.2	Tunneling: A Physical Discussion		437
22.3	A Triangular Barrier		438
22.4	More Nuts and Bolts		440
	22.4.1 The Phase Shift		445
	22.4.2 Some Comments on Convergence		445
	22.4.3 The Transition to Classical Scattering		446
22.5	Coulomb Scattering: The Asymptotic Solution		448
	22.5.1 Parabolic Cylindrical Coordinates (ξ, η, ϕ)		449
	22.5.2 Asymptotic Form of ${}_{1}F_{1}(-i\mu, 1; ik\xi)$		450
	22.5.3 The Spherical Coordinate System Revisited		451
22.6	Coulomb Scattering: The WKB(J) Approximation		453
	22.6.1 Coulomb Phases		453
	22.6.2 Formal WKB(J) Solutions for the TIRSE		454
	22.6.3 The Langer Transformation: Further Justification		456
Chapter 2	23 A Sturm-Liouville Equation: The Time-Independent		
One-l	Dimensional Schrödinger Equation		459
23.1	Various Theorems		460
23.2	Bound States		463
	23.2.1 Bound-State Theorems		463
	23.2.2 Complex Eigenvalues: Identities for $Im(\lambda_n)$ and $Re(\lambda_n)$		467
	23.2.3 Further Theorems		468
23.3	Weyl's Theorem: Limit Point and Limit Circle		471
PART V	SPECIAL TOPICS IN SCATTERING THEORY		475
Chanter :	24 The S-Matrix and Its Analysis		477
24.1	-		477
24.1	A Square Well Potential 24.1.1 The Bound States		
	24.1.1 The Bound States 24.1.2 Square Well Resonance: A Heuristic Derivation		480
	of the Breit-Wigner Formula		480
	24.1.3 The Watson Transform and Regge Poles		481
24.2	More Details for the TIRSE		487
24.3	Levinson's Theorem		489
24.3	Levinson's Theorem		407
Chapter 2	25 The Jost Solutions: Technical Details		491
25.1	Once More the TIRSE		491
25.2	The Regular Solution Again		494
25.3	Poles of the S-Matrix		498
	25.3.1 Wavepacket Approach		501

XIV	•	CONI	TENTS	

Chapter 2	26 One-Dimensional Jost Solutions: The S-Matrix Revisited	504
26.1	Transmission and Reflection Coefficients	504
	26.1.1 Poles of the Transmission Coefficient: Zeros of $c_{12}(k)$	506
26.2	The Jost Formulation on $[0, \infty)$: The Radial Equation Revisited	507
	26.2.1 Jost Boundary Conditions at $r = 0$	507
	26.2.2 Jost Boundary Conditions as $r \to \infty$	508
	26.2.3 The Jost Function and the S-Matrix	508
	26.2.4 Scattering from a Constant Spherical Inhomogeneity	509
Chapter 2	27 Morphology-Dependent Resonances: The Effective Potential	512
27.1	Some Familiar Territory	512
	27.1.1 A Toy Model for $l \neq 0$ Resonances: A Particle Analogy	516
	27.1.2 Resonances	521
Chapter 2	28 Back Where We Started	523
28.1	A Bridge over Colored Water	523
28.2	Ray Optics Revisited: Luneberg Inversion and Gravitational	
	Lensing	531
	28.2.1 Abel's Integral Equation and the Luneberg Lens	531
	28.2.2 Connection with Classical Scattering and	
	Gravitational Lensing	534
Appendix	A Order Notation: The "Big O," "Little o," and " \sim " Symbols	537
Appendix	B Ray Theory: Exact Solutions	539
B.1	Profile 1	540
B.2	Profile 2	541
B.3	Profile 3	542
B.4	Profile 4	543
B.5	Profile 5	543
B.6	Profile 6	544
B.7	Profile 7	545
B.8	Profile 8	546
B.9	Profile 9	546
B.10	Profile 10	547
	C Radially Inhomogeneous Spherically Symmetric Scattering:	
The C	Governing Equations	550
C.1	The Tranverse Magnetic Mode	550
C.2	The Tranverse Electric Mode	551

CONTENTS	• XV
Appendix D Electromagnetic Scattering from a Radially Inhomogeneous Sphere	553
D.1 A classical/Quantum connection for Transverse Electric and	
Magnetic Modes	553
D.2 A Liouville Transformation	556
Appendix E Helmholtz's Theorem	559
E.1 Proof of Helmholtz's Theorem	559
E.2 Lamé's Theorem	560
Appendix F Semiclassical Scattering: A Précis (and a Few More Details)	562
Bibliography	567
Index	585