Contents

Ргетасе	X1
Acknowledgments	xiii
PART 1. GROUPS AND SPACES	1
1. Groups Matt Clay and Dan Margalit	3
1.1 Groups	5
1.2 Infinite groups	9
1.3 Homomorphisms and normal subgroups	13
1.4 Group presentations	17
2and Spaces Matt Clay and Dan Margalit	21
2.1 Graphs	23
2.2 Metric spaces	34
2.3 Geometric group theory: groups and their spaces	40
PART 2. FREE GROUPS	43
3. Groups Acting on Trees Dan Margalit	45
3.1 The Farey tree	46
3.2 Free actions on trees	50
3.3 Non-free actions on trees	56
4. Free Groups and Folding Matt Clay	66
4.1 Topological model for the free group	67
4.2 Subgroups via graphs	70
4.3 Applications of folding	73
5. The Ping-Pong Lemma Johanna Mangahas	85
5.1 Statement, proof, and first examples using ping-pong	85
5.2 Ping-pong with Möbius transformations	90
5.3 Hyperbolic geometry	95
5.4 Final remarks	103

viii		CONTENTS
6. Autor	morphisms of Free Groups Matt Clay	106
6.1	Automorphisms of groups: first examples	106
6.2	Automorphisms of free groups: a first look	108
6.3	Train tracks	110
PART 3.	LARGE SCALE GEOMETRY	123
7. Quas	i-isometries Dan Margalit and Anne Thomas	125
7.1	Example: the integers	126
7.2	Bi-Lipschitz equivalence of word metrics	127
7.3	Quasi-isometric equivalence of Cayley graphs	130
7.4	Quasi-isometries between groups and spaces	133
7.5	Quasi-isometric rigidity	139
8. Dehn	Functions Timothy Riley	146
8.1	Jigsaw puzzles reimagined	147
8.2	A complexity measure for the word problem	149
8.3	Isoperimetry	156
8.4	A large-scale geometric invariant	162
8.5	The Dehn function landscape	163
9. Нуре	rbolic Groups Moon Duchin	176
9.1	Definition of hyperbolicity	178
9.2	Examples and nonexamples	182
9.3	Surface groups	186
9.4	Geometric properties	193
9.5	Hyperbolic groups have solvable word problem	197
10. Ends	of Groups Nic Koban and John Meier	203
10.1	An example	203
10.2	The number of ends of a group	206
10.3	Semidirect products	208
10.4	Calculating the number of ends of the braid groups	213
10.5	Moving beyond counting	215
11. Asym	nptotic Dimension Greg Bell	219
11.1	Dimension	219
11.2	Motivating examples	220
11.3	Large-scale geometry	223
11.4	Topology and dimension	225
11.5	Large-scale dimension	227
11.6	Motivating examples revisited	231
11.7	Three questions	233
11.8	Other examples	234

CONTENTS		İX
12. Grow	rth of Groups Eric Freden	237
12.1	Growth series	238
12.2		244
	Formal languages and context-free grammars	250
12.4		256
12.7	The Bo v medica	230
PART 4.	EXAMPLES	267
13. Coxe	ter Groups Adam Piggott	269
13.1	Groups generated by reflections	269
13.2	Discrete groups generated by reflections	275
13.3	Relations in finite groups generated by reflections	278
13.4	Coxeter groups	281
14. Right	-Angled Artin Groups Robert W. Bell and Matt Clay	291
14.1	Right-angled Artin groups as subgroups	293
14.2		295
14.3	Subgroups of right-angled Artin groups	298
14.4	The word problem for right-angled Artin groups	301
15. Lamp	olighter Groups	310
15.1	Generators and relators	311
15.2		315
	Dead end elements	318
15.4		321
15.5		327
16. Thom	npson's Group Sean Cleary	331
16.1	Analytic definition and basic properties	332
16.2	· ·	336
	Presentations	340
	Algebraic structure	345
16.5	Geometric properties	352
17 Mar	oping Class Groups Tara Brendle, Leah Childers, and	
۱۱، ۱۰۱۵	Dan Margalit	358
17.1	A brief user's guide to surfaces	359
17.2	Homeomorphisms of surfaces	363
17.3	Mapping class groups	367
17.4	Dehn twists in the mapping class group	370
17.5	Generating the mapping class group by Dehn twists	373
18. Braid	ls Aaron Abrams	384
18.1	Getting started	384
18.2	Some group theory	387
	For general queries, contact webmaster@press.princeton.edu	

X			CONTENTS
	18.3	Some topology: configuration spaces	395
	18.4	More topology: punctured disks	400
	18.5	Connection: knot theory	404
	18.6	Connection: robotics	407
	18.7	Connection: hyperplane arrangements	409
	18.8	A stylish and practical finale	411
В	ibliogra	phy	419
lr	ndex		437