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Chapter Three


Matrix Manifolds: First-Order Geometry 

The constraint sets associated with the examples discussed in Chapter 2 have 
a particularly rich geometric structure that provides the motivation for this 
book. The constraint sets are matrix manifolds in the sense that they are 
manifolds in the meaning of classical differential geometry, for which there 
is a natural representation of elements in the form of matrix arrays. 

The matrix representation of the elements is a key property that allows 
one to provide a natural development of differential geometry in a matrix 
algebra formulation. The goal of this chapter is to introduce the fundamental 
concepts in this direction: manifold structure, tangent spaces, cost functions, 
differentiation, Riemannian metrics, and gradient computation. 

There are two classes of matrix manifolds that we consider in detail in this 
book: embedded submanifolds of Rn×p and quotient manifolds of Rn×p (for 
1 ≤ p ≤ n). Embedded submanifolds are the easiest to understand, as they 
have the natural form of an explicit constraint set in matrix space Rn×p. 
The case we will be mostly interested in is the set of orthonormal n × p 
matrices that, as will be shown, can be viewed as an embedded submanifold 
of Rn×p called the Stiefel manifold St(p, n). In particular, for p = 1, the 
Stiefel manifold reduces to the unit sphere Sn−1, and for p = n, it reduces 
to the set of orthogonal matrices O(n). 

Quotient spaces are more difficult to visualize, as they are not defined as 
sets of matrices; rather, each point of the quotient space is an equivalence 
class of n × p matrices. In practice, an example n × p matrix from a given 
equivalence class is used to represent an element of matrix quotient space 
in computer memory and in our numerical development. The calculations 
related to the geometric structure of a matrix quotient manifold can be 
expressed directly using the tools of matrix algebra on these representative 
matrices. 

The focus of this first geometric chapter is on the concepts from differen­
tial geometry that are required to generalize the steepest-descent method, 
arguably the simplest approach to unconstrained optimization. In Rn, the 
steepest-descent algorithm updates a current iterate x in the direction where 
the first-order decrease of the cost function f is most negative. Formally, the 
update direction is chosen to be the unit norm vector η that minimizes the 
directional derivative 

Df (x) [η] = lim 
f(x + tη) − f(x) 

. (3.1) 
t→0 t 

When the domain of f is a manifold M, the argument x + tη in (3.1) does 
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not make sense in general since M is not necessarily a vector space. This 
leads to the important concept of a tangent vector (Section 3.5). In order to 
define the notion of a steepest-descent direction, it will then remain to define 
the length of a tangent vector, a task carried out in Section 3.6 where the 
concept of a Riemannian manifold is introduced. This leads to a definition 
of the gradient of a function, the generalization of steepest-descent direction 
on a Riemannian manifold. 

3.1 MANIFOLDS 

We define the notion of a manifold in its full generality; then we consider 
the simple but important case of linear manifolds, a linear vector space 
interpreted as a manifold with Euclidean geometric structure. The manifold 
of n×p real matrices, from which all concrete examples in this book originate, 
is a linear manifold. 

A d-dimensional manifold can be informally defined as a set M covered 
with a “suitable” collection of coordinate patches, or charts, that identify 
certain subsets of M with open subsets of Rd. Such a collection of coordinate 
charts can be thought of as the basic structure required to do differential 
calculus on M. 

It is often cumbersome or impractical to use coordinate charts to (locally) 
turn computational problems on M into computational problems on Rd . 
The numerical algorithms developed later in this book rely on exploiting the 
natural matrix structure of the manifolds associated with the examples of 
interest, rather than imposing a local Rd structure. Nevertheless, coordinate 
charts are an essential tool for addressing fundamental notions such as the 
differentiability of a function on a manifold. 

3.1.1 Definitions: charts, atlases, manifolds 

The abstract definition of a manifold relies on the concepts of charts and 
atlases. 

Let M be a set. A bijection (one-to-one correspondence) ϕ of a subset U
of M onto an open subset of Rd is called a d-dimensional chart of the set M, 
denoted by (U , ϕ). When there is no risk of confusion, we will simply write 
ϕ for (U , ϕ). Given a chart (U , ϕ) and x ∈ U , the elements of ϕ(x) ∈ Rd are 
called the coordinates of x in the chart (U , ϕ). 

The interest of the notion of chart (U , ϕ) is that it makes it possible to 
study objects associated with U by bringing them to the subset ϕ(U) of Rd . 
For example, if f is a real-valued function on U , then f ◦ ϕ−1 is a function 
from Rd to R, with domain ϕ(U), to which methods of real analysis apply. 
To take advantage of this idea, we must require that each point of the set 
M be at least in one chart domain; moreover, if a point x belongs to the 
domains of two charts (U1, ϕ1) and (U2, ϕ2), then the two charts must give 
compatible information: for example, if a real-valued function f is defined 
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ϕ−1 ϕ−1 on U1 ∩ U2, then f and f 2 should have the same differentiability ◦	 1 ◦
properties on U1 ∩ U2. 

The following concept takes these requirements into account. A (C∞) atlas 
of M into Rd is a collection of charts (Uα, ϕα) of the set M such that 

1.	
⋃

α Uα = M, 
2.	 for any pair α, β with Uα∩Uβ =6 ∅, the sets ϕα(Uα∩Uβ) and ϕβ(Uα∩Uβ) 

are open sets in Rd and the change of coordinates 

ϕβ ϕ−1 : Rd Rd ◦	 α → 

(see Appendix A.3 for our conventions on functions) is smooth (class 
C∞, i.e., differentiable for all degrees of differentiation) on its domain 
ϕα(Uα ∩ Uβ); see illustration in Figure 3.1. We say that the elements 
of an atlas overlap smoothly. 

Two atlases A1 and A2 are equivalent if A1 ∪ A2 is an atlas; in other 
words, for every chart (U , ϕ) in A2, the set of charts A1 ∪ {(U , ϕ)} is still 
an atlas. Given an atlas A, let A+ be the set of all charts (U , ϕ) such that 
A ∪ {(U , ϕ)} is also an atlas. It is easy to see that A+ is also an atlas, 
called the maximal atlas (or complete atlas) generated by the atlas A. Two 
atlases are equivalent if and only if they generate the same maximal atlas. 
A maximal atlas of a set M is also called a differentiable structure on M. 

In the literature, a manifold is sometimes simply defined as a set endowed 
with a differentiable structure. However, this definition does not exclude 
certain unconventional topologies. For example, it does not guarantee that 
convergent sequences have a single limit point (an example is given in Sec­
tion 4.3.2). To avoid such counterintuitive situations, we adopt the following 
classical definition. A (d-dimensional) manifold is a couple (M, A+), where 
M is a set and A+ is a maximal atlas of M into Rd, such that the topology 
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induced by A+ is Hausdorff and second-countable. (These topological issues 
are discussed in Section 3.1.2.) 

A maximal atlas of a set M that induces a second-countable Hausdorff 
topology is called a manifold structure on M. Often, when (M, A+) is a 
manifold, we simply say “the manifold M” when the differentiable structure 
is clear from the context, and we say “the set M” to refer to M as a plain set 
without a particular differentiable structure. Note that it is not necessary to 
specify the whole maximal atlas to define a manifold structure: it is enough 
to provide an atlas that generates the manifold structure. 

Given a manifold (M, A+), an atlas of the set M whose maximal atlas is 
A+ is called an atlas of the manifold (M, A+); a chart of the set M that 
belongs to A+ is called a chart of the manifold (M, A+), and its domain is 
a coordinate domain of the manifold. By a chart around a point x ∈M, we 
mean a chart of (M, A+) whose domain U contains x. The set U is then a 
coordinate neighborhood of x. 

Given a chart ϕ on M, the inverse mapping ϕ−1 is called a local parame­
terization of M. A family of local parameterizations is equivalent to a family 
of charts, and the definition of a manifold may be given in terms of either. 

3.1.2 The topology of a manifold* 

Recall that the star in the section title indicates material that can be readily 
skipped at a first reading. 

It can be shown that the collection of coordinate domains specified by a 
maximal atlas A+ of a set M forms a basis for a topology of the set M. (We 
refer the reader to Section A.2 for a short introduction to topology.) We call 
this topology the atlas topology of M induced by A. In the atlas topology, a 
subset V of M is open if and only if, for any chart (U , ϕ) in A+ , ϕ(V ∩ U) 
is an open subset of Rd. Equivalently, a subset V of M is open if and only 
if, for each x ∈ V, there is a chart (U , ϕ) in A+ such that x ∈ U ⊂ V. An 
atlas A of a set M is said to be compatible with a topology T on the set M
if the atlas topology is equal to T . 

An atlas topology always satisfies separation axiom T1, i.e., given any two 
distinct points x and y, there is an open set U that contains x and not y. 
(Equivalently, every singleton is a closed set.) But not all atlas topologies 
are Hausdorff (i.e., T2): two distinct points do not necessarily have disjoint 
neighborhoods. Non-Hausdorff spaces can display unusual and counterintu­
itive behavior. From the perspective of numerical iterative algorithms the 
most worrying possibility is that a convergent sequence on a non-Hausdorff 
topological space may have several distinct limit points. Our definition of 
manifold rules out non-Hausdorff topologies. 

A topological space is second-countable if there is a countable collection B
of open sets such that every open set is the union of some subcollection of 
B. Second-countability is related to partitions of unity, a crucial tool in re­
solving certain fundamental questions such as the existence of a Riemannian 
metric (Section 3.6) and the existence of an affine connection (Section 5.2). 
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The existence of partitions of unity subordinate to arbitrary open cover­
ings is equivalent to the property of paracompactness. A set endowed with a 
Hausdorff atlas topology is paracompact (and has countably many compo­
nents) if (and only if) it is second-countable. Since manifolds are assumed 
to be Hausdorff and second-countable, they admit partitions of unity. 

For a manifold (M, A+), we refer to the atlas topology of M induced by 
A as the manifold topology of M. Note that several statements in this book 
also hold without the Hausdorff and second-countable assumptions. These 
cases, however, are of marginal importance and will not be discussed. 

Given a manifold (M, A+) and an open subset X of M (open is to be 
understood in terms of the manifold topology of M), the collection of the 
charts of (M, A+) whose domain lies in X forms an atlas of X . This defines 
a differentiable structure on of the same dimension as With this X M. 
structure, X is called an open submanifold of M. 

A manifold is connected if it cannot be expressed as the disjoint union of 
two nonempty open sets. Equivalently (for a manifold), any two points can 
be joined by a piecewise smooth curve segment. The connected components 
of a manifold are open, thus they admit a natural differentiable structure as 
open submanifolds. The optimization algorithms considered in this book are 
iterative and oblivious to the existence of connected components other than 
the one to which the current iterate belongs. Therefore we have no interest 
in considering manifolds that are not connected. 

3.1.3 How to recognize a manifold 

Assume that a computational problem involves a search space X . How can 
we check that X is a manifold? It should be clear from Section 3.1.1 that 
this question is not well posed: by definition, a manifold is not simply a set 
X but rather a couple (X , A+) where X is a set and A+ is a maximal atlas 
of X inducing a second-countable Hausdorff topology. 

A well-posed question is to ask whether a given set X admits an atlas. 
There are sets that do not admit an atlas and thus cannot be turned into a 
manifold. A simple example is the set of rational numbers: this set does not 
even admit charts; otherwise, it would not be denumerable. Nevertheless, sets 
abound that admit an atlas. Even sets that do not “look” differentiable may 
admit an atlas. For example, consider the curve γ : R → R2 : γ(t) = (t, |t|) 
and let X be the range of γ; see Figure 3.2. Consider the chart ϕ : X → 
R : (t, |t|) 7→ t. It turns out that A := {(X , ϕ)} is an atlas of the set X ; 
therefore, (X , A+) is a manifold. The incorrect intuition that X cannot be 
a manifold because of its “corner” corresponds to the fact that X is not a 
submanifold of R2; see Section 3.3. 

A set X may admit more than one maximal atlas. As an example, take 
the set R and consider the charts ϕ1 : x 7→ x and ϕ2 : x 7→ x3. Note that ϕ1 

ϕ−1and ϕ2 are not compatible since the mapping ϕ1 2 is not differentiable ◦
at the origin. However, each chart individually forms an atlas of the set R. 
These two atlases are not equivalent; they do not generate the same maximal 
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Figure 3.2 Image of the curve γ : t 7→ (t, |t|). 

atlas. Nevertheless, the chart x 7→ x is clearly more natural than the chart 
x 7→ x3. Most manifolds of interest admit a differentiable structure that is 
the most “natural”; see in particular the notions of embedded and quotient 
matrix manifold in Sections 3.3 and 3.4. 

3.1.4 Vector spaces as manifolds 

Let E be a d-dimensional vector space. Then, given a basis (ei)i=1,...,d of E , 
the function 

1

x
 

. .ψ : E → Rd : x 7→  . 


dx

isuch that x = 
∑d 

ei is a chart of the set E . All charts built in this way i=1 x
are compatible; thus they form an atlas of the set E , which endows E with 
a manifold structure. Hence, every vector space is a linear manifold in a 
natural way. 

Needless to say, the challenging case is the one where the manifold struc­
ture is nonlinear , i.e., manifolds that are not endowed with a vector space 
structure. The numerical algorithms considered in this book apply equally 
to linear and nonlinear manifolds and reduce to classical optimization algo­
rithms when the manifold is linear. 

3.1.5 The manifolds Rn×p and Rn
∗
×p 

Algorithms formulated on abstract manifolds are not strictly speaking nu­
merical algorithms in the sense that they involve manipulation of differential-
geometric objects instead of numerical calculations. Turning these abstract 
algorithms into numerical algorithms for specific optimization problems relies 
crucially on producing adequate numerical representations of the geometric 
objects that arise in the abstract algorithms. A significant part of this book 
is dedicated to building a toolbox of results that make it possible to perform 
this “geometric-to-numerical” conversion on matrix manifolds (i.e., mani­
folds obtained by taking embedded submanifolds and quotient manifolds of 
Rn×p). The process derives from the manifold structure of the set Rn×p of 
n × p real matrices, discussed next. 
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The set Rn×p is a vector space with the usual sum and multiplication by 
a scalar. Consequently, it has a natural linear manifold structure. A chart 
of this manifold is given by ϕ : Rn×p Rnp : X 7→ vec(X), where vec(X)→
denotes the vector obtained by stacking the columns of X below one an­
other. We will refer to the set Rn×p with its linear manifold structure as the 
manifold Rn×p. Its dimension is np. 

The manifold Rn×p can be further turned into a Euclidean space with the 
inner product 

〈Z1, Z2〉 := vec(Z1)T vec(Z2) = tr(Z1 
TZ2). (3.2) 

The norm induced by the inner product is the Frobenius norm defined by 

‖Z‖2 F = tr(ZTZ), 

i.e., ‖Z‖2 is the sum of the squares of the elements of Z. Observe that F 

the manifold topology of Rn×p is equivalent to its canonical topology as a 
Euclidean space (see Appendix A.2). 

Let Rn
∗
×p (p ≤ n) denote the set of all n × p matrices whose columns are 

linearly independent. This set is an open subset of Rn×p since its complement 
{X ∈ Rn×p : det(XTX) = 0} is closed. Consequently, it admits a structure 
of an open submanifold of Rn×p. Its differentiable structure is generated by 

Rnp the chart ϕ : Rn
∗
×p → : X 7→ vec(X). This manifold will be referred to 

as the manifold Rn
∗
×p, or the noncompact Stiefel manifold of full-rank n × p 

matrices. 
In the particular case p = 1, the noncompact Stiefel manifold reduces to 

the Euclidean space Rn with the origin removed. When p = n, the noncom-
pact Stiefel manifold becomes the general linear group GLn, i.e., the set of 
all invertible n × n matrices. 

Notice that the chart vec : Rn×p Rnp is unwieldy, as it destroys the →
matrix structure of its argument; in particular, vec(AB) cannot be written 
as a simple expression of vec(A) and vec(B). In this book, the emphasis is 
on preserving the matrix structure. 

3.1.6 Product manifolds 

Let M1 and M2 be manifolds of dimension d1 and d2, respectively. The set 
M1 ×M2 is defined as the set of pairs (x1, x2), where x1 is in M1 and x2 

is in M2. If (U1, ϕ1) and (U2, ϕ2) are charts of the manifolds M1 and M2, 
respectively, then the mapping ϕ1 × ϕ2 : U1 × U2 → Rd1 × Rd2 : (x1, x2) 7→
(ϕ1(x1), ϕ2(x2)) is a chart for the set M1×M2. All the charts thus obtained 
form an atlas for the set M1×M2. With the differentiable structure defined 
by this atlas, M1×M2 is called the product of the manifolds M1 and M2. Its 
manifold topology is equivalent to the product topology. Product manifolds 
will be useful in some later developments. 
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3.2 DIFFERENTIABLE FUNCTIONS 

Mappings between manifolds appear in many places in optimization algo­
rithms on manifolds. First of all, any optimization problem on a manifold 
M involves a cost function, which can be viewed as a mapping from the man­
ifold M into the manifold R. Other instances of mappings between manifolds 
are inclusions (in the theory of submanifolds; see Section 3.3), natural pro­
jections onto quotients (in the theory of quotient manifolds, see Section 3.4), 
and retractions (a fundamental tool in numerical algorithms on manifolds; 
see Section 4.1). This section introduces the notion of differentiability for 
functions between manifolds. The coordinate-free definition of a differential 
will come later, as it requires the concept of a tangent vector. 

Let F be a function from a manifold M1 of dimension d1 into another 
manifold M2 of dimension d2. Let x be a point of M1. Choosing charts ϕ1 

and ϕ2 around x and F (x), respectively, the function F around x can be 
“read through the charts”, yielding the function 

ˆ ϕ−1 Rd2F = ϕ2 F 1 : Rd1 , (3.3) ◦ ◦ → 

called a coordinate representation of F . (Note that the domain of F̂ is in 
general a subset of Rd1 ; see Appendix A.3 for the conventions.) 

We say that F is differentiable or smooth at x if F̂ is of class C∞ at ϕ1(x). 
It is easily verified that this definition does not depend on the choice of the 
charts chosen at x and F (x). A function F : M1 →M2 is said to be smooth 
if it is smooth at every point of its domain. 

A (smooth) diffeomorphism F : M1 →M2 is a bijection such that F and 
its inverse F −1 are both smooth. Two manifolds M1 and M2 are said to be 
diffeomorphic if there exists a diffeomorphism on M1 onto M2. 

In this book, all functions are assumed to be smooth unless otherwise stated. 

3.2.1 Immersions and submersions 

The concepts of immersion and submersion will make it possible to define 
submanifolds and quotient manifolds in a concise way. Let F : M1 → M2 

be a differentiable function from a manifold M1 of dimension d1 into a 
manifold M2 of dimension d2. Given a point x of M1, the rank of F at x 
is the dimension of the range of D F̂ (ϕ1(x)) [ ] : Rd1 Rd2 , where F̂ is a · →
coordinate representation (3.3) of F around x, and D F̂ (ϕ1(x)) denotes the 
differential of F̂ at ϕ1(x) (see Section A.5). (Notice that this definition does 
not depend on the charts used to obtain the coordinate representation F̂ of 
F .) The function F is called an immersion if its rank is equal to d1 at each 
point of its domain (hence d1 ≤ d2). If its rank is equal to d2 at each point 
of its domain (hence d1 ≥ d2), then it is called a submersion. 

The function F is an immersion if and only if, around each point of its do­
main, it admits a coordinate representation that is the canonical immersion 
(u1, . . . , ud1) 7→ (u1, . . . , ud1 , 0, . . . , 0). The function F is a submersion if and 
only if, around each point of its domain, it admits the canonical submersion 
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(u1, . . . , ud1) 7→ (u1, . . . , ud2) as a coordinate representation. A point y ∈M2 

is called a regular value of F if the rank of F is d2 at every x ∈ F −1(y). 

3.3 EMBEDDED SUBMANIFOLDS 

A set X may admit several manifold structures. However, if the set X is 
a subset of a manifold (M, A+), then it admits at most one submanifold 
structure. This is the topic of this section. 

3.3.1 General theory 

Let (M, A+) and (N , B+) be manifolds such that N ⊂ M. The manifold 
(N , B+) is called an immersed submanifold of (M, A+) if the inclusion map 
i : N →M : x 7→ x is an immersion. 

Let (N , B+) be a submanifold of (M, A+). Since M and N are manifolds, 
they are also topological spaces with their manifold topology. If the mani­
fold topology of N coincides with its subspace topology induced from the 
topological space M, then N is called an embedded submanifold , a regular 
submanifold , or simply a submanifold of the manifold M. Asking that a 
subset N of a manifold M be an embedded submanifold of M removes all 
freedom for the choice of a differentiable structure on N : 

Proposition 3.3.1 Let N be a subset of a manifold M. Then N admits at 
most one differentiable structure that makes it an embedded submanifold of 
M. 

As a consequence of Proposition 3.3.1, when we say in this book that a subset 
of a manifold “is” a submanifold, we mean that it admits one (unique) dif­
ferentiable structure that makes it an embedded submanifold. The manifold 
M in Proposition 3.3.1 is called the embedding space. When the embed­
ding space is Rn×p or an open subset of Rn×p, we say that N is a matrix 
submanifold . 

To check whether a subset N of a manifold M is an embedded submanifold 
of M and to construct an atlas of that differentiable structure, one can 
use the next proposition, which states that every embedded submanifold 
is locally a coordinate slice. Given a chart (U , ϕ) of a manifold M, a ϕ­
coordinate slice of U is a set of the form ϕ−1(Rm ×{0}) that corresponds to 
all the points of U whose last n − m coordinates in the chart ϕ are equal to 
zero. 

Proposition 3.3.2 (submanifold property) A subset N of a manifold 
M is a d-dimensional embedded submanifold of M if and only if, around 
each point x ∈ N , there exists a chart (U , ϕ) of M such that N ∩ U is a 
ϕ-coordinate slice of U , i.e., 

N ∩ U = {x ∈ U : ϕ(x) ∈ Rd × {0}}. 
In this case, the chart (N ∩ U , ϕ), where ϕ is seen as a mapping into Rd , 
is a chart of the embedded submanifold N . 
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The next propositions provide sufficient conditions for subsets of manifolds 
to be embedded submanifolds. 

Proposition 3.3.3 (submersion theorem) Let F : M1 → M2 be a 
smooth mapping between two manifolds of dimension d1 and d2, d1 > d2, 
and let y be a point of M2. If y is a regular value of F (i.e., the rank of F 
is equal to d2 at every point of F −1(y)), then F −1(y) is a closed embedded 
submanifold of M1, and dim(F −1(y)) = d1 − d2. 

Proposition 3.3.4 (subimmersion theorem) Let F : M1 → M2 be a 
smooth mapping between two manifolds of dimension d1 and d2 and let y 
be a point of F (M1). If F has constant rank k < d1 in a neighborhood of 
F −1(y), then F −1(y) is a closed embedded submanifold of M1 of dimension 
d1 − k. 

Functions on embedded submanifolds pose no particular difficulty. Let N
be an embedded submanifold of a manifold M. If f is a smooth function 
on M, then f |N , the restriction of f to N , is a smooth function on N . 
Conversely, any smooth function on N can be written locally as a restriction 
of a smooth function defined on an open subset U ⊂M. 

3.3.2 The Stiefel manifold 

The (orthogonal) Stiefel manifold is an embedded submanifold of Rn×p that 
will appear frequently in our practical examples. 

Let St(p, n) (p ≤ n) denote the set of all n × p orthonormal matrices; i.e., 

St(p, n) := {X ∈ Rn×p : XTX = Ip}, (3.4) 

where Ip denotes the p × p identity matrix. The set St(p, n) (endowed with 
its submanifold structure as discussed below) is called an (orthogonal or 
compact) Stiefel manifold . Note that the Stiefel manifold St(p, n) is distinct 
from the noncompact Stiefel manifold Rn

∗
×p defined in Section 3.1.5. 

Clearly, St(p, n) is a subset of the set Rn×p. Recall that the set Rn×p 

admits a linear manifold structure as described in Section 3.1.5. To show 
that St(p, n) is an embedded submanifold of the manifold Rn×p, consider 
the function F : Rn×p → Ssym(p) : X 7→ XTX − Ip, where Ssym(p) denotes 
the set of all symmetric p × p matrices. Note that Ssym(p) is a vector space. 
Clearly, St(p, n) = F −1(0p). It remains to show that F is a submersion at 
each point X of St(p, n). The fact that the domain of F is a vector space 
exempts us from having to read F through a chart: we simply need to show 
that for all Ẑ in Ssym(p), there exists Z in Rn×p such that DF (X) [Z] = Ẑ. 
We have (see Appendix A.5 for details on matrix differentiation) 

DF (X) [Z] = XTZ + ZTX. 

It is easy to see that DF (X) 
[ 

2
1XẐ

] 
= Ẑ since XTX = Ip and ẐT = Ẑ. 

This shows that F is full rank. It follows from Proposition 3.3.3 that the set 
St(p, n) defined in (3.4) is an embedded submanifold of Rn×p. 
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To obtain the dimension of St(p, n), observe that the vector space Ssym(p) 
has dimension 1

2p(p + 1) since a symmetric matrix is completely determined 
by its upper triangular part (including the diagonal). From Proposition 3.3.3, 
we obtain 

dim(St(p, n)) = np − 1 p(p + 1).2

Since St(p, n) is an embedded submanifold of Rn×p, its topology is the 
subset topology induced by Rn×p. The manifold St(p, n) is closed: it is 
the inverse image of the closed set {0p} under the continuous function 
F : Rn×p 7→ Ssym(p). It is bounded: each column of X ∈ St(p, n) has norm 
1, so the Frobenius norm of X is equal to 

√
p. It then follows from the Heine-

Borel theorem (see Section A.2) that the manifold St(p, n) is compact . 
For p = 1, the Stiefel manifold St(p, n) reduces to the unit sphere Sn−1 in 

Rn. Notice that the superscript n−1 indicates the dimension of the manifold. 
For p = n, the Stiefel manifold St(p, n) becomes the orthogonal group On. 

Its dimension is 1n(n − 1). 2

3.4 QUOTIENT MANIFOLDS 

Whereas the topic of submanifolds is covered in any introductory textbook 
on manifolds, the subject of quotient manifolds is less classical. We develop 
the theory in some detail because it has several applications in matrix com­
putations, most notably in algorithms that involve subspaces of Rn. Compu­
tations involving subspaces are usually carried out using matrices to repre­
sent the corresponding subspace generated by the span of its columns. The 
difficulty is that for one given subspace, there are infinitely many matrices 
that represent the subspace. It is then desirable to partition the set of ma­
trices into classes of “equivalent” elements that represent the same object. 
This leads to the concept of quotient spaces and quotient manifolds. In this 
section, we first present the general theory of quotient manifolds, then we 
return to the special case of subspaces and their representations. 

3.4.1 Theory of quotient manifolds 

Let M be a manifold equipped with an equivalence relation ∼, i.e., a relation 
that is 

1. reflexive: x ∼ x for all x ∈M, 
2. symmetric: x ∼ y if and only if y ∼ x for all x, y ∈M, 
3. transitive: if x ∼ y and y ∼ z then x ∼ z for all x, y, z ∈M. 

The set 

[x] := {y ∈M : y ∼ x} 
of all elements that are equivalent to a point x is called the equivalence class 
containing x. The set 

M/ ∼:= {[x] : x ∈ M} 
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of all equivalence classes of ∼ in M is called the quotient of M by ∼. Notice 
that the points of M/ ∼ are subsets of M. The mapping π : M → M/ ∼
defined by x 7→ [x] is called the natural projection or canonical projection. 
Clearly, π(x) = π(y) if and only if x ∼ y, so we have [x] = π−1(π(x)). We 
will use π(x) to denote [x] viewed as a point of M/∼, and π−1(π(x)) for [x] 
viewed as a subset of M. The set M is called the total space of the quotient 
M/ ∼. 

Let (M, A+) be a manifold with an equivalence relation ∼ and let B+ be 
a manifold structure on the set M/∼. The manifold (M/∼, B+) is called a 
quotient manifold of (M, A+) if the natural projection π is a submersion. 

Proposition 3.4.1 Let M be a manifold and let M/∼ be a quotient of M. 
Then M/∼ admits at most one manifold structure that makes it a quotient 
manifold of M. 

Given a quotient M/ ∼ of a manifold M, we say that the set M/ ∼ is a 
quotient manifold if it admits a (unique) quotient manifold structure. In this 
case, we say that the equivalence relation ∼ is regular, and we refer to the 
set M/∼ endowed with this manifold structure as the manifold M/∼. 

The following result gives a characterization of regular equivalence rela­
tions. Note that the graph of a relation ∼ is the set 

graph(∼) := {(x, y) ∈M×M : x ∼ y}. 

Proposition 3.4.2 An equivalence relation ∼ on a manifold M is regular 
(and thus M/∼ is a quotient manifold) if and only if the following conditions 
hold together: 

(i) The graph of ∼ is an embedded submanifold of the product manifold 
M×M. 

(ii) The projection π1 : graph(∼) →M, π1(x, y) = x is a submersion. 
(iii) The graph of ∼ is a closed subset of M×M (where M is endowed 

with its manifold topology). 

The dimension of M/∼ is given by 

dim(M/∼) = 2 dim(M) − dim(graph(∼)). (3.5) 

The next proposition distinguishes the role of the three conditions in 
Proposition 3.4.2. 

Proposition 3.4.3 Conditions (i) and (ii) in Proposition 3.4.2 are neces­
sary and sufficient for M/ ∼ to admit an atlas that makes π a submersion. 
Such an atlas is unique, and the atlas topology of M/ ∼ is identical to its 
quotient topology. Condition (iii) in Proposition 3.4.2 is necessary and suf­
ficient for the quotient topology to be Hausdorff. 

The following result follows from Proposition 3.3.3 by using the fact that 
the natural projection to a quotient manifold is by definition a submersion. 
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Proposition 3.4.4 Let M/ ∼ be a quotient manifold of a manifold M and 
let π denote the canonical projection. If dim(M/ ∼) < dim(M), then each 
equivalence class π−1(π(x)), x ∈ M, is an embedded submanifold of M of 
dimension dim(M) − dim(M/∼). 

If dim(M/ ∼) = dim(M), then each equivalence class π−1(π(x)), x ∈M, is 
a discrete set of points. From now on we consider only the case dim(M/∼) < 
dim(M). 

When M is Rn×p or a submanifold of Rn×p, we call M/∼ a matrix quo­
tient manifold . For ease of reference, we will use the generic name structure 
space both for embedding spaces (associated with embedded submanifolds) 
and for total spaces (associated with quotient manifolds). We call a matrix 
manifold any manifold that is constructed from Rn×p by the operations of 
taking embedded submanifolds and quotient manifolds. The major matrix 
manifolds that appear in this book are the noncompact Stiefel manifold (de­
fined in Section 3.1.5), the orthogonal Stiefel manifold (Section 3.3.2), and 
the Grassmann manifold (Section 3.4.4). Other important matrix manifolds 
are the oblique manifold 

{X ∈ Rn×p : diag(XTX) = Ip}, 
where diag(M) denotes the matrix M with all its off-diagonal elements as­
signed to zero; the generalized Stiefel manifold 

{X ∈ Rn×p : XTBX = I} 
where B is a symmetric positive-definite matrix; the flag manifolds, which 
are quotients of R

n
∗
×p where two matrices are equivalent when they are 

related by a right multiplication by a block upper triangular matrix with 
prescribed block size; and the manifold of symplectic matrices 

{X ∈ R2n×2n : XTJX = J}, 
Inwhere J = 

[ 
0n 

]
.−In 0n 

3.4.2 Functions on quotient manifolds 

A function f on M is termed invariant under ∼ if f(x) = f(y) whenever 
x ∼ y, in which case the function f induces a unique function f̃  on M/ ∼, 
called the projection of f , such that f = f̃  π.◦ 

M 
� 

� f 
π 

� 

�

�

�

�

�

�

�

� � 

� 

M/∼ 
f̃

�� N 

The smoothness of f̃  can be checked using the following result. 

Proposition 3.4.5 Let M/∼ be a quotient manifold and let f̃  be a function 
on M/ ∼. Then f̃  is smooth if and only if f := f̃  ◦ π is a smooth function 
on M. 
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3.4.3 The real projective space RP
n−1 

The real projective space RP
n−1 is the set of all directions in Rn, i.e., the 

set of all straight lines passing through the origin of Rn. Let Rn := Rn −{0}∗ 
denote the Euclidean space Rn with the origin removed. Note that R∗ 

n is 
the p = 1 particularization of the noncompact Stiefel manifold Rn

∗
×p (Sec­

tion 3.1.5); hence Rn is an open submanifold of Rn. The real projective space∗ 
RP

n−1 is naturally identified with the quotient Rn 
∗ /∼, where the equivalence 

relation is defined by 

x ∼ y ⇔ ∃t ∈ R∗ : y = xt, 

and we write 

RP
n−1 ≃ Rn 

∗ /∼ 

to denote the identification of the two sets. 
The proof that Rn 

∗ / ∼ is a quotient manifold follows as a special case of 
Proposition 3.4.6 (stating that the Grassmann manifold is a matrix quotient 
manifold). The letters RP stand for “real projective”, while the superscript 
(n − 1) is the dimension of the manifold. There are also complex projec­
tive spaces and more generally projective spaces over more abstract vector 
spaces. 

3.4.4 The Grassmann manifold Grass(p, n) 

Let n be a positive integer and let p be a positive integer not greater than n. 
Let Grass(p, n) denote the set of all p-dimensional subspaces of Rn. In this 
section, we produce a one-to-one correspondence between Grass(p, n) and 
a quotient manifold of Rn×p, thereby endowing Grass(p, n) with a matrix 
manifold structure. 

Recall that the noncompact Stiefel manifold Rn
∗
×p is the set of all n × p 

matrices with full column rank. Let ∼ denote the equivalence relation on 
R

n
∗
×p defined by 

X ∼ Y ⇔ span(X) = span(Y ), (3.6) 

where span(X) denotes the subspace {Xα : α ∈ Rp} spanned by the columns 
of X ∈ Rn

∗
×p . Since the fibers of span( ) are the equivalence classes of ∼ and·

since span( ) is onto Grass(p, n), it follows that span( ) induces a one-to-one· ·
correspondence between Grass(p, n) and Rn

∗
×p/∼. 

Rn×p 
∗ 

�

� 

span 
π 

Rn
∗
×p/ ∼ �� �� Grass(p, n) 

f̃

Before showing that the set Rn
∗
×p/∼ is a quotient manifold, we introduce 

some notation and terminology. If a matrix X and a subspace X satisfy 
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0 

X 

X GLp 

Figure 3.3 Schematic illustration of the representation of Grass(p, n) as the quo­
tient space Rn

∗
×p/GLp. Each point is an n-by-p matrix. Each line is an 

equivalence class of the matrices that have the same span. Each line 
corresponds to an element of Grass(p, n). The figure corresponds to the 
case n = 2, p = 1. 

X = span(X), we say that X is the span of X, that X spans X , or that X is a 
matrix representation of X . The set of all matrix representations of span(X) 
is the equivalence class π−1(π(X)). We have π−1(π(X)) = {XM : M ∈
GLp} =: XGLp; indeed, the operations X 7→ XM , M ∈ GLp, correspond 
to all possible changes of basis for span(X). We will thus use the notation 
R

n
∗
×p/GLp for Rn

∗
×p/∼. Therefore we have 

Grass(p, n) ≃ Rn×p/GLp.∗ 

A schematic illustration of the quotient Rn
∗
×p/GLp is given in Figure 3.3. 

The identification of Rn
∗
×p/GLp with the set of p-dimensional subspaces 

(p-planes) in Rn makes this quotient particularly worth studying. Next, the 
quotient Rn

∗
×p/GLp is shown to be a quotient manifold. 

Proposition 3.4.6 (Grassmann manifold) The quotient set Rn
∗
×p/GLp 

(i.e., the quotient of Rn
∗
×p by the equivalence relation defined in (3.6)) admits 

a (unique) structure of quotient manifold. 

Proof. We show that the conditions in Proposition 3.4.2 are satisfied. We first 
prove condition (ii). Let (X0, Y0) be in graph(∼). Then there exists M such 
that Y0 = X0M . Given any V in Rn×p, the curve t 7→ (X0 +tV, (X0 +tV )M) 
is into graph(∼) and satisfies d (π1(γ(t)))

∣∣
t=0 

= V . This shows that π1 is dt
a submersion. For condition (iii), observe that the graph of ∼ is closed as 
it is the preimage of the closed set {0n×p} under the continuous function 
R

n
∗
×p × Rn

∗
×p → Rn×p : (X,Y ) 7→ (I − X(XTX)−1XT )Y . For condition 

(i), the idea is to produce submersions Fi with open domain Ωi ⊂ (Rn
∗
×p 

R
n
∗
×p) such that graph(∼) ∩ Ωi is the zero-level set of Fi and that the Ωi

×
’s 

cover graph(∼). It then follows from Proposition 3.3.3 that graph(∼) is an 
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embedded submanifold of Rn
∗
×p × Rn

∗
×p. To this end, assume for a moment 

that we have a smooth function 

Rn
∗
×p St(n − p, n) : X 7→ X⊥ (3.7) → 

such that XTX⊥ = 0 for all X in an open domain Ω̃ and consider 

F : Ω̃× Rn
∗
×p 

⊥ Y. → R(n−p)×p : (X,Y ) 7→ XT 

Then F −1(0) = graph(∼) ∩ dom(F ). Moreover, F is a submersion on its 
domain since for any V ∈ R(n−p)×p, 

DF (X,Y )[0, X⊥V ] = XT 
⊥ (X⊥V ) = V. 

It remains to define the smooth function (3.7). Depending on n and p, it may 
or may not be possible to define such a function on the whole Rn

∗
×p. However, 

there are always such functions, constructed as follows, whose domain Ω̃ is 
open and dense in Rn

∗
×p. Let E ∈ Rn×(n−p) be a constant matrix of the form 

E = 
[
ei1 | · · · |ein−p 

] 
, 

where the ei’s are the canonical vectors in Rn (unit vectors with a 1 in the ith 
entry), and define X⊥ as the orthonormal matrix obtained by taking the last 
n − p columns of the Gram-Schmidt orthogonalization of the matrix [X E]. 

Ω = {X ∈ Rn×p : [X|
XT 

|
This function is smooth on the domain ˜

∗ E] full rank}, 
which is an open dense subset of Rn

∗
×p. Consequently, F (X,Y ) = ⊥ Y is 

smooth (and submersive) on the domain Ω = Ω̃ × R∗ 
n×p . This shows that 

graph(∼) ∩ Ω is an embedded submanifold of (Rn
∗
×p × Rn

∗
×p). Taking other 

matrices E yields other domains Ω which together cover (Rn
∗
×p × Rn

∗
×p), so 

graph(∼) is an embedded submanifold of (Rn
∗
×p × Rn

∗
×p), and the proof is 

complete. � 

Endowed with its quotient manifold structure, the set Rn
∗
×p/GLp is called 

the Grassmann manifold of p-planes in Rn and denoted by Grass(p, n). The 
particular case Grass(1, n) = RP

n is the real projective space discussed in 
Section 3.4.3. From Proposition 3.3.3, we have that dim(graph(∼)) = 2np −
(n − p)p. It then follows from (3.5) that 

dim(Grass(p, n)) = p(n − p). 

3.5 TANGENT VECTORS AND DIFFERENTIAL MAPS 

There are several possible approaches to generalizing the notion of a direc­
tional derivative 

Df (x) [η] = lim 
f(x + tη) − f(x) 

(3.8) 
t→0 t 

to a real-valued function f defined on a manifold. A first possibility is to 
view η as a derivation at x, that is, an object that, when given a real-valued 
function f defined on a neighborhood of x ∈M, returns a real ηf , and that 
satisfies the properties of a derivation operation: linearity and the Leibniz 
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rule (see Section 3.5.5). This “axiomatization” of the notion of a directional 
derivative is elegant and powerful, but it gives little intuition as to how a 
tangent vector could possibly be represented as a matrix array in a computer. 

A second, perhaps more intuitive approach to generalizing the directional 
derivative (3.8) is to replace t 7→ (x+tη) by a smooth curve γ on M through x 

(i.e., γ(0) = x). This yields a well-defined directional derivative d(f(
d
γ
t 
(t))) . 

∣∣∣
t=0 

(Note that this is a classical derivative since the function t 7→ f(γ(t)) is a 
smooth function from R to R.) Hence we have an operation, denoted by γ̇(0), 
that takes a function f , defined locally in a neighbourhood of x, and returns 

the real number d(f(γ(t))) .dt 

∣∣∣
t=0 

These two approaches are reconciled by showing that every derivative 
along a curve defines a pointwise derivation and that every pointwise deriva­
tion can be realized as a derivative along a curve. The first claim is direct. 
The second claim can be proved using a local coordinate representation, a 
third approach used to generalize the notion of a directional derivative. 

3.5.1 Tangent vectors 

Let M be a manifold. A smooth mapping γ : R →M: t 7→ γ(t) is termed a 
curve in M. The idea of defining a derivative γ ′ (t) as 

γ ′ (t) := lim 
γ(t + τ ) − γ(t) 

(3.9) 
τ→0 τ 

requires a vector space structure to compute the difference γ(t+τ )−γ(t) and 
thus fails for an abstract nonlinear manifold. However, given a smooth real-
valued function f on M, the function f γ : t 7→ f(γ(t)) is a smooth function ◦
from R to R with a well-defined classical derivative. This is exploited in the 
following definition. Let x be a point on M, let γ be a curve through x at 
t = 0, and let Fx(M) denote the set of smooth real-valued functions defined 
on a neighborhood of x. The mapping γ̇(0) from Fx(M) to R defined by 

d(f(γ(t))) 
γ̇(0)f := , f ∈ Fx(M), (3.10) 

dt 

∣∣∣∣
t=0 

is called the tangent vector to the curve γ at t = 0. 
We emphasize that γ̇(0) is defined as a mapping from Fx(M) to R and 

not as the time derivative γ ′ (0) as in (3.9), which in general is meaningless. 
However, when M is (a submanifold of) a vector space E , the mapping γ̇(0) 
from Fx(M) to R and the derivative γ ′ (0) := limt→0

1 (γ(t)−γ(0)) are closely t 

related: for all functions f defined in a neighborhood U of γ(0) in E , we have 

γ̇(0)f = Df (γ(0)) [γ ′ (0)] , 

where f denotes the restriction of f to U∩M; see Sections 3.5.2 and 3.5.7 for 
details. It is useful to keep this interpretation in mind because the derivative 
γ ′ (0) is a more familiar mathematical object than γ̇(0). 

We can now formally define the notion of a tangent vector. 
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Definition 3.5.1 (tangent vector) A tangent vector ξx to a manifold M
at a point x is a mapping from Fx(M) to R such that there exists a curve γ 
on M with γ(0) = x, satisfying 

d(f(γ(t))) 
ξxf = γ̇(0)f :=


dt 

∣∣∣∣
t=0


for all f ∈ Fx(M). Such a curve γ is said to realize the tangent vector ξx. 

The point x is called the foot of the tangent vector ξx. We will often omit 
the subscript indicating the foot and simply write ξ for ξx. 

Given a tangent vector ξ to M at x, there are infinitely many curves γ 
that realize ξ (i.e., γ̇(0) = ξ). They can be characterized as follows in local 
coordinates. 

Proposition 3.5.2 Two curves γ1 and γ2 through a point x at t = 0 satisfy 
γ̇1(0) = γ̇2(0) if and only if, given a chart (U , ϕ) with x ∈ U , it holds that 

d(ϕ(γ1(t))) d(ϕ(γ2(t))) 
= . 

dt 

∣∣∣∣
t=0 dt 

∣∣∣∣
t=0 

Proof. The “only if” part is straightforward since each component of the 
vector-valued ϕ belongs to Fx(M). For the “if” part, given any f ∈ Fx(M), 
we have 

d(f(γ1(t))) d((f ϕ−1)(ϕ(γ1(t)))) 
γ̇1(0)f = = 

◦ 
dt 

∣∣∣∣
t=0 dt 

∣∣∣∣
t=0 

d((f ϕ−1)(ϕ(γ2(t)))) 
= 

◦ 
= γ̇2(0)f. 

dt 

∣∣∣∣
t=0 

The tangent space to M at x, denoted by TxM, is the set of all tangent 
vectors to M at x. This set admits a structure of vector space as follows. 
Given γ̇1(0) and γ̇2(0) in TxM and a, b in R, define 

(aγ̇1(0) + bγ̇2(0)) f := a (γ̇1(0)f) + b (γ̇2(0)f) . 

To show that (aγ̇1(0) + bγ̇2(0)) is a well-defined tangent vector, we need to 
show that there exists a curve γ such that γ̇(0) = aγ̇1(0) + bγ̇2(0). Such 
a curve is obtained by considering a chart (U , ϕ) with x ∈ U and defining 
γ(t) = ϕ−1(aϕ(γ1(t) + bϕ(γ2(t)). It is readily checked that this γ satisfies 
the required property. 

The property that the tangent space TxM is a vector space is very impor­
tant. In the same way that the derivative of a real-valued function provides 
a local linear approximation of the function, the tangent space TxM pro­
vides a local vector space approximation of the manifold. In particular, in 
Section 4.1, we define mappings, called retractions, between M and TxM, 
which can be used to locally transform an optimization problem on the 
manifold M into an optimization problem on the more friendly vector space 
TxM. 
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Using a coordinate chart, it is possible to show that the dimension of 
the vector space TxM is equal to d, the dimension of the manifold M: 
given a chart (U , ϕ) at x, a basis of TxM is given by (γ̇1(0), . . . , γ̇d(0)), 
where γi(t) := ϕ−1(ϕ(x) + tei), with ei denoting the ith canonical vector of 
Rd . Notice that γ̇i(0)f = ∂i(f ϕ−1)(ϕ(x)), where ∂i denotes the partial ◦
derivative with respect to the ith component: 

∂ih(x) := lim 
h(x + tei) − h(x) 

. 
t→0 t 

One has, for any tangent vector γ̇(0), the decomposition 

γ̇(0) = 
∑

(γ̇(0)ϕi)γ̇i(0), 
i 

where ϕi denotes the ith component of ϕ. This provides a way to define the 
coordinates of tangent vectors at x using the chart (U , ϕ), by defining the 
element of Rd 


γ̇(0)ϕ1

 

.

. 
 .  

γ̇(0)ϕd 

as the representation of the tangent vector γ̇(0) in the chart (U , ϕ). 

3.5.2 Tangent vectors to a vector space 

Let E be a vector space and let x be a point of E . As pointed out in Sec­
tion 3.1.4, E admits a linear manifold structure. Strictly speaking, a tangent 
vector ξ to E at x is a mapping 

ξ : Fx(E) R : f 7→ ξf = 
d(f(γ(t))) 

,→ 
dt 

∣∣∣∣
t=0 

where γ is a curve in E with γ(0) = x. Defining γ ′ (0) ∈ E as in (3.9), we 
have 

ξf = Df (x) [γ ′ (0)] . 

Moreover, γ ′ (0) does not depend on the curve γ that realizes ξ. This defines 
a canonical linear one-to-one correspondence ξ 7→ γ ′ (0), which identifies TxE
with E : 

TxE ≃ E . (3.11) 

Since tangent vectors are local objects (a tangent vector at a point x acts on 
smooth real-valued functions defined in any neighborhood of x), it follows 
that if E∗ is an open submanifold of E , then 

TxE∗ ≃ E (3.12) 

for all x ∈ E∗. A schematic illustration is given in Figure 3.4. 
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E∗ 

E 

Figure 3.4 Tangent vectors to an open subset E∗ of a vector space E . 

3.5.3 Tangent bundle 

Given a manifold M, let T M be the set of all tangent vectors to M: 

T M := 
⋃ 

TxM. 
x∈M 

Since each ξ ∈ T M is in one and only one tangent space TxM, it follows 
that M is a quotient of T M with natural projection 

x, π : T M→M : ξ ∈ TxM 7→ 

i.e., π(ξ) is the foot of ξ. The set T M admits a natural manifold structure 
as follows. Given a chart (U , ϕ) of M, the mapping 

ξ ∈ TxM 7→ (ϕ1(x), . . . , ϕd(x), ξϕ1, . . . , ξϕd)T 

is a chart of the set T M with domain π−1(U). It can be shown that the 
collection of the charts thus constructed forms an atlas of the set T M, 
turning it into a manifold called the tangent bundle of M. 

3.5.4 Vector fields 

A vector field ξ on a manifold M is a smooth function from M to the tangent 
bundle T M that assigns to each point x ∈ M a tangent vector ξx ∈ TxM. 
On a submanifold of a vector space, a vector field can be pictured as a 
collection of arrows, one at each point of M. Given a vector field ξ on M
and a (smooth) real-valued function f ∈ F(M), we let ξf denote the real-
valued function on M defined by 

(ξf)(x) := ξx(f) 

for all x in M. The addition of two vector fields and the multiplication of a 
vector field by a function f ∈ F(M) are defined as follows: 

(fξ)x := f(x)ξx, 

(ξ + ζ)x := ξx + ζx for all x ∈M. 
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Smoothness is preserved by these operations. We let X(M) denote the set 
of smooth vector fields endowed with these two operations. 

Let (U , ϕ) be a chart of the manifold M. The vector field Ei on U defined 
by 

(Eif)(x) := ∂i(f ϕ−1)(ϕ(x)) = D(f ϕ−1) (ϕ(x)) [ei]◦	 ◦ 
is called the ith coordinate vector field of (U , ϕ). These coordinate vector 
fields are smooth, and every vector field ξ admits the decomposition 

ξ = 
∑

(ξϕi)Ei 

i 

on U . (A pointwise version of this result was given in Section 3.5.1.) 
If the manifold is an n-dimensional vector space E , then, given a basis 

(ei)i=1,...,d of E , the vector fields Ei, i = 1, . . . , n, defined by 

(Eif)(x) := lim 
f(x + tei) − f(x) 

= Df (x) [ei] 
t→0 t 

form a basis of X(E). 

3.5.5 Tangent vectors as derivations∗ 

Let x and η be elements of Rn. The derivative mapping that, given a real-
valued function f on Rn, returns the real Df (x) [η] can be axiomatized as 
follows on manifolds. Let M be a manifold and recall that F(M) denotes 
the set of all smooth real-valued functions on M. Note that F(M) ⊂ Fx(M) 
for all x ∈M. A derivation at x ∈M is a mapping ξx from F(M) to R that 
is 

1.	 R-linear: ξx(af + bg) = aξx(f) + bξx(g), and 
2.	 Leibnizian: ξx(fg) = ξx(f)g(x) + f(x)ξx(g), for all a, b ∈ R and f, g ∈

F(M). 

With the operations 

(ξx + ζx)f := ξx(f) + ζx(f), 

(aξx)f := aξx(f) for all f ∈ F(M), a ∈ R, 

the set of all derivations at x becomes a vector space. It can also be shown 
that a derivation ξx at x is a local notion: if two real-valued functions f and 
g are equal on a neighborhood of x, then ξx(f) = ξx(g). 

The concept of a tangent vector at x, as defined in Section 3.5.1, and the 
notion of a derivation at x are equivalent in the following sense: (i) Given a 
curve γ on M through x at t = 0, the mapping γ̇(0) from F(M) ⊆ Fx(M) 
to R, defined in (3.10), is a derivation at x. (ii) Given a derivation ξ at x, 
there exists a curve γ on M through x at t = 0 such that γ̇(0) = ξ. For 
example, the curve γ defined by γ(t) = ϕ−1 (ϕ(0) + t 

∑
i(ξ(ϕi)ei)) satisfies 

the property. 
A (global) derivation on F(M) is a mapping D : F(M) F(M) that is → 

© Copyright, Princeton University Press. No part of this book may be 
distributed, posted, or reproduced in any form by digital or mechanical 
means without prior written permission of the publisher. 

For general queries, contact webmaster@press.princeton.edu



00˙AMS September 23, 2007

38 CHAPTER 3 

1. R-linear: D(af + bg) = a D(f) + b D(g), (a, b ∈ R), and 
2. Leibnizian: D(fg) = D(f)g + f D(g). 

Every vector field ξ ∈ X(M) defines a derivation f 7→ ξf . Conversely, every 
derivation on F(M) can be realized as a vector field. (Viewing vector fields as 
derivations comes in handy in understanding Lie brackets; see Section 5.3.1.) 

3.5.6 Differential of a mapping 

Let F : M → N be a smooth mapping between two manifolds M and N . 
Let ξx be a tangent vector at a point x of M. It can be shown that the 
mapping DF (x) [ξx] from FF (x)(N ) to R defined by 

(DF (x) [ξ]) f := ξ(f F ) (3.13) ◦ 
is a tangent vector to N at F (x). The tangent vector DF (x) [ξx] is realized 
by F γ, where γ is any curve that realizes ξx. The mapping ◦


DF (x) : TxM→ TF (x)N : ξ 7→ DF (x) [ξ]


is a linear mapping called the differential (or differential map, derivative, or 
tangent map) of F at x (see Figure 3.5). 

ξx 

TxM 

x 

γ(t) 

M 

N 

F (x) 

TF (x)N 

DF (x)[ξx] 

F 

DF (x) 

F (γ(t)) 

Figure 3.5 Differential map of F at x. 

Note that F is an immersion (respectively, submersion) if and only if 
DF (x) : TxM → TF (x)N is an injection (respectively, surjection) for every 
x ∈M. 

If N is a vector space E , then the canonical identification TF (x)E ≃ E 
yields 

DF (x) [ξx] = 
∑

(ξxF i)ei, (3.14) 
i 

where F (x) = 
∑

i F i(x)ei is the decomposition of F (x) in a basis (ei)i=1,...,n 

of E . 
If N = R, then F ∈ Fx(M), and we simply have 

DF (x) [ξx] = ξxF (3.15) 
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using the identification TxR ≃ R. We will often use DF (x) [ξx] as an alter­
native notation for ξxF , as it better emphasizes the derivative aspect. 

If M and N are linear manifolds, then, with the identification TxM≃M 
and TyN ≃ N , DF (x) reduces to its classical definition 

DF (x) [ξx] = lim 
F (x + tξx) − F (x) 

. (3.16) 
t→0 t 

Given a differentiable function F : M 7→ N and a vector field ξ on M, we 
let DF [ξ] denote the mapping 

DF [ξ] : M→ T N : x 7→ DF (x) [ξx] . 

In particular, given a real-valued function f on M and a vector field ξ on 
M, 

Df [ξ] = ξf. 

3.5.7 Tangent vectors to embedded submanifolds 

We now investigate the case where M is an embedded submanifold of a 
vector space E . Let γ be a curve in M, with γ(0) = x. Define 

γ ′ (0) := lim 
γ(t) − γ(0) 

, 
t→0 t 

where the subtraction is well defined since γ(t) belongs to the vector space E
for all t. (Strictly speaking, one should write i(γ(t)) − i(γ(0)), where i is the 
natural inclusion of M in E ; the inclusion is omitted to simplify the notation.) 
It follows that γ ′ (0) thus defined is an element of TxE ≃ E (see Figure 3.6). 
Since γ is a curve in M, it also induces a tangent vector γ̇(0) ∈ TxM. Not 

Sn−1 

γ(t) 

x = γ(0) γ′(0) 

R 

γ 

R 

f 

Figure 3.6 Curves and tangent vectors on the sphere. Since Sn−1 is an embedded 
submanifold of Rn, the tangent vector γ̇(0) can be pictured as the 
directional derivative γ ′ (0). 

surprisingly, γ ′ (0) and γ̇(0) are closely related: If f is a real-valued function 
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in a neighborhood U of x in E and f denotes the restriction of f to U ∩M 
(which is a neighborhood of x in M since M is embedded), then we have 

d d 
γ̇(0)f = f(γ(t)) = f(γ(t)) = Df (x) [γ ′ (0)] . (3.17) 

dt 

∣∣∣∣
t=0 dt 

∣∣∣∣
t=0 

This yields a natural identification of TxM with the set 

{γ ′ (0) : γ curve in M, γ(0) = x}, (3.18) 

which is a linear subspace of the vector space TxE ≃ E . In particular, when 
M is a matrix submanifold (i.e., the embedding space is Rn×p), we have 
TxE = Rn×p, hence the tangent vectors to M are naturally represented by 
n × p matrix arrays. 

Graphically, a tangent vector to a submanifold of a vector space can be 
thought of as an “arrow” tangent to the manifold. It is convenient to keep 
this intuition in mind when dealing with more abstract manifolds; however, 
one should bear in mind that the notion of a tangent arrow cannot always 
be visualized meaningfully in this manner, in which case one must return to 
the definition of tangent vectors as objects that, given a real-valued function, 
return a real number, as stated in Definition 3.5.1. 

In view of the identification of TxM with (3.18), we now write γ̇(t), γ ′ (t), 
and d γ(t) interchangeably. We also use the equality sign, such as in (3.19) dt 
below, to denote the identification of TxM with (3.18). 

When M is (locally or globally) defined as a level set of a constant-rank 
function F : E 7→ Rn, we have 

TxM = ker(DF (x)). (3.19) 

In other words, the tangent vectors to M at x correspond to those vectors 
ξ that satisfy DF (x) [ξ] = 0. Indeed, if γ is a curve in M with γ(0) = x, we 
have F (γ(t)) = 0 for all t, hence 

d(F (γ(t))) 
DF (x) [γ̇(0)] = = 0,

dt 

∣∣∣∣
t=0 

which shows that γ̇(0) ∈ ker(DF (x)). By counting dimensions using Propo­
sition 3.3.4, it follows that TxM and ker(DF (x)) are two vector spaces of 
the same dimension with one included in the other. This proves the equal­
ity (3.19). 

Example 3.5.1 Tangent space to a sphere 
Let t 7→ x(t) be a curve in the unit sphere Sn−1 through x0 at t = 0. Since 

x(t) ∈ Sn−1 for all t, we have 

x T (t)x(t) = 1 

for all t. Differentiating this equation with respect to t yields 

ẋT (t)x(t) + x T (t)ẋ(t) = 0, 

hence ẋ(0) is an element of the set 

{z ∈ Rn : x0 
T z = 0}. (3.20) 
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Sn−1 

x(t) 

x0 = x(0) x ′(0) 

Figure 3.7 Tangent space on the sphere. Since Sn−1 is an embedded submanifold 
of Rn, the tangent space TxSn−1 can be pictured as the hyperplane 
tangent to the sphere at x, with origin at x. 

This shows that Tx0
Sn−1 is a subset of (3.20). Conversely, let z belong to 

the set (3.20). Then the curve t 7→ x(t) := (x0 + tz)/‖x0 + tz‖ is on Sn−1 

and satisfies ẋ(0) = z. Hence (3.20) is a subset of Tx0
Sn−1. In conclusion, 

TxS
n−1 = {z ∈ Rn : x T z = 0}, (3.21) 

which is the set of all vectors orthogonal to x in Rn; see Figure 3.7. 
More directly, consider the function F : Rn → R : x 7→ xTx − 1. Since 

Sn−1 = {x ∈ Rn : F (x) = 0} and since F is full rank on Sn−1, it follows 
from (3.19) that 

TxS
n−1 = ker(DF (x)) = {z ∈ Rn : x T z + z T x = 0} = {z ∈ Rn : x T z = 0}, 

as in (3.21). 

Example 3.5.2 Orthogonal Stiefel manifold 
We consider the orthogonal Stiefel manifold 

St(p, n) = {X ∈ Rn×p : XTX = Ip} 
as an embedded submanifold of the Euclidean space Rn×p (see Section 3.3.2). 
Let X0 be an element of St(p, n) and let t 7→ X(t) be a curve in St(p, n) 
through X0 at t = 0; i.e., X(t) ∈ Rn×p, X(0) = X0, and 

XT (t)X(t) = Ip (3.22) 

for all t. It follows by differentiating (3.22) that 

ẊT (t)X(t) + XT (t)Ẋ(t) = 0. (3.23) 
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We deduce that Ẋ(0) belongs to the set 

{Z ∈ Rn×p : X0 
TZ + ZTX0 = 0}. (3.24) 

We have thus shown that TX0 
St(p, n) is a subset of (3.24). It is possible 

to conclude, as in the previous example, by showing that for all Z in (3.24) 
there is a curve in St(p, n) through X0 at t such that Ẋ(0) = Z. A simpler 
argument is to invoke (3.19) by pointing out that (3.24) is the kernel of 
DF (X0), where F : X 7→ XTX, so that Ip is a regular value of F and 
F −1(Ip) = St(p, n). In conclusion, the set described in (3.24) is the tangent 
space to St(p, n) at X0. That is, 

TX St(p, n) = {Z ∈ Rn×p : XTZ + ZTX = 0}. 
We now propose an alternative characterization of TX St(p, n). Without 

loss of generality, since Ẋ(t) is an element of Rn×p and X(t) has full rank, 
we can set 

Ẋ(t) = X(t)Ω(t) + X⊥(t)K(t), (3.25) 

where X⊥(t) is any n × (n − p) matrix such that span(X⊥(t)) is the or­
thogonal complement of span(X(t)). Replacing (3.25) in (3.23) yields 

Ω(t)T + Ω(t) = 0; 

i.e., Ω(t) is a skew-symmetric matrix. Counting dimensions, we deduce that 

TX St(p, n) = {XΩ + X⊥K : ΩT = −Ω, K ∈ R(n−p)×p}. 
Observe that the two characterizations of TX St(p, n) are facilitated by the 

embedding of St(p, n) in Rn×p: TX St(p, n) is identified with a linear subspace 
of Rn×p. 

Example 3.5.3 Orthogonal group 
Since the orthogonal group On is St(p, n) with p = n, it follows from the 

previous section that 

TUOn = {Z = UΩ : ΩT = −Ω} = USskew(n), (3.26) 

where Sskew(n) denotes the set of all skew-symmetric n × n matrices. 

3.5.8 Tangent vectors to quotient manifolds 

We have seen that tangent vectors of a submanifold embedded in a vector 
space E can be viewed as tangent vectors to E and pictured as arrows in E
tangent to the submanifold. The situation of a quotient E/ ∼ of a vector space 
E is more abstract. Nevertheless, the structure space E also offers convenient 
representations of tangent vectors to the quotient. 

For generality, we consider an abstract manifold M and a quotient mani­
fold M = M/ ∼ with canonical projection π. Let ξ be an element of TxM
and let x be an element of the equivalence class π−1(x). Any element ξ of 
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TxM that satisfies Dπ(x)[ξ] = ξ can be considered a representation of ξ. In­
deed, for any smooth function f : M→ R, the function f := f ◦ π : M→ R 
is smooth (Proposition 3.4.5), and one has 

Df(x)[ξ] = Df(π(x))[Dπ(x)[ξ]] = Df(x)[ξ]. 

A difficulty with this approach is that there are infinitely many valid rep­
resentations ξ of ξ at x. 

It is desirable to identify a unique “lifted” representation of tangent vectors 
of TxM in TxM in order that we can use the lifted tangent vector repre­
sentation unambiguously in numerical computations. Recall from Proposi­
tion 3.4.4 that the equivalence class π−1(x) is an embedded submanifold of 
M. Hence π−1(x) admits a tangent space 

Vx = Tx(π−1(x)) 

called the vertical space at x. A mapping H that assigns to each element x of 
M a subspace Hx of TxM complementary to Vx (i.e., such that Hx ⊕ Vx = 
TxM) is called a horizontal distribution on M. Given x ∈M, the subspace 
Hx of TxM is then called the horizontal space at x; see Figure 3.8. Once 
M is endowed with a horizontal distribution, there exists one and only one 
element ξx that belongs to Hx and satisfies Dπ(x)[ξx] = ξ. This unique 
vector ξ is called the horizontal lift of ξ at x.x 

In particular, when the structure space is (a subset of) Rn×p, the hori­
zontal lift ξ is an n × p matrix, which lends itself to representation in a x 

computer as a matrix array. 

Example 3.5.4 Real projective space 
Recall from Section 3.4.3 that the projective space RP

n−1 is the quotient 
Rn 
∗ /∼, where x ∼ y if and only if there is an α ∈ R∗ such that y = xα. The 

equivalence class of a point x of Rn is ∗ 

[x] = π−1(π(x)) = xR∗ := {xα : α ∈ R∗}. 
The vertical space at a point x ∈ Rn is ∗ 

Vx = xR := {xα : α ∈ R}. 
A suitable choice of horizontal distribution is 

Hx := (Vx)⊥ := {z ∈ Rn : x T z = 0}. (3.27) 

(This horizontal distribution will play a particular role in Section 3.6.2 where 
the projective space is turned into a Riemannian quotient manifold.) 

A tangent vector ξ ∈ Tπ(x)RP
n−1 is represented by its horizontal lift ξx ∈ 

Hx at a point x ∈ Rn 
∗ . It would be equally valid to use another representation 

ξy ∈ Hy of the same tangent vector at another point y ∈ Rn such that x ∼ y.∗ 

The two representations ξx and ξy are not equal as vectors in Rn but are 
related by a scaling factor, as we now show. First, note that x ∼ y if and 
only if there exists a nonzero scalar α such that y = αx. Let f : RP

n−1 
R→

be an arbitrary smooth function and define f := f π : Rn R. Consider ◦ ∗ →
the function g : x 7→ αx, where α is an arbitrary nonzero scalar. Since 
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π−1(π(x)) 

x 

Vx 

Hx 

E 

π


E/ ∼ 
x = π(x) 

Figure 3.8 Schematic illustration of a quotient manifold. An equivalence class 
π−1(π(x)) is pictured as a subset of the total space E and corresponds 
to the single point π(x) in the quotient manifold E/ ∼. At x, the tan­
gent space to the equivalence class is the vertical space Vx, and the 
horizontal space Hx is chosen as a complement of the vertical space. 

π(g(x)) = π(x) for all x, we have f(g(x)) = f(x) for all x, and it follows by 
taking the differential of both sides that 

Df(g(x))[Dg(x)[ξx]] = Df(x)[ξx]. (3.28) 

By the definition of ξx, we have Df(x)[ξx] = Df(π(x))[ξ]. Moreover, we have 
Dg(x)[ξx] = αξx. Thus (3.28) yields Df(αx)[αξx]] = Df(π(αx))[ξ]. This 
result, since it is valid for any smooth function f , implies that Dπ(αx)[αξx] = 
ξ. This, along with the fact that αξ is an element of Hαx, implies that αξx x 

is the horizontal lift of ξ at αx, i.e., 

ξαx = αξx. 

Example 3.5.5 Grassmann manifolds 
Tangent vectors to the Grassmann manifolds and their matrix representa­

tions are presented in Section 3.6. 
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3.6 RIEMANNIAN METRIC, DISTANCE, AND GRADIENTS 

Tangent vectors on manifolds generalize the notion of a directional deriva­
tive. In order to characterize which direction of motion from x produces the 
steepest increase in f , we further need a notion of length that applies to 
tangent vectors. This is done by endowing every tangent space TxM with 
an inner product 〈·, ·〉x, i.e., a bilinear, symmetric positive-definite form. The 
inner product 〈·, ·〉x induces a norm, 

‖ξx‖x := 
√
〈ξx, ξx〉x, 

on TxM. (The subscript x may be omitted if there is no risk of confusion.) 
The (normalized) direction of steepest ascent is then given by 

arg max Df (x) [ξx] . 
ξ∈TxM:‖ξx‖=1 

A manifold whose tangent spaces are endowed with a smoothly varying 
inner product is called a Riemannian manifold . The smoothly varying inner 
product is called the Riemannian metric. We will use interchangeably the 
notation 

g(ξx, ζx) = gx(ξx, ζx) = 〈ξx, ζx〉 = 〈ξx, ζx〉x 

to denote the inner product of two elements ξx and ζx of TxM. Strictly 
speaking, a Riemannian manifold is thus a couple (M, g), where M is a 
manifold and g is a Riemannian metric on M. Nevertheless, when the Rie­
mannian metric is unimportant or clear from the context, we simply talk 
about “the Riemannian manifold M”. A vector space endowed with an in­
ner product is a particular Riemannian manifold called Euclidean space. Any 
(second-countable Hausdorff) manifold admits a Riemannian structure. 

Let (U , ϕ) be a chart of a Riemannian manifold (M, g). The components 
of g in the chart are given by 

gij := g(Ei, Ej), 

where Ei denotes the ith coordinate vector field (see Section 3.5.4). Thus, 
for vector fields ξ = 

∑
i ξ

iEi and ζ = 
∑

i ζ
iEi, we have 

g(ξ, ζ) = 〈ξ, η〉 = 
∑ 

gijξ
iζj . 

i,j 

Note that the gij ’s are real-valued functions on U ⊆M. One can also define 
the real-valued functions gij◦ϕ−1 on ϕ(U) ⊆ Rd; we use the same notation gij 

for both. We also use the notation G : ˆ x for the matrix-valued function x 7→ Gˆ

such that the (i, j) element of Gx̂ is gij | . If we let ξ̂x̂ = Dϕ 
(
ϕ−1(x̂)

) 
[ξx]x̂

and ζ̂x̂ = Dϕ 
(
ϕ−1(x̂)

) 
[ζx], with x̂ = ϕ(x), denote the representations of ξx 

and ζx in the chart, then we have, in matrix notation, 

g(ξx, ζx) = 〈ξx, ζx〉 = ξ̂x
T 
ˆGx̂ζ̂x̂. (3.29) 

Note that G is a symmetric, positive definite matrix at every point. 
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The length of a curve γ : [a, b] →M on a Riemannian manifold (M, g) is 
defined by 

L(γ) = 
∫ b √

g(γ̇(t), γ̇(t)) dt. 
a 

The Riemannian distance on a connected Riemannian manifold (M, g) is 

dist : M×M→ R : dist(x, y) = inf L(γ) (3.30) 
Γ 

where Γ is the set of all curves in M joining points x and y. Assuming (as 
usual) that M is Hausdorff, it can be shown that the Riemannian distance 
defines a metric; i.e., 

1.	 dist(x, y) ≥ 0, with dist(x, y) = 0 if and only if x = y (positive­
definiteness); 

2.	 dist(x, y) = dist(y, x) (symmetry); 
3.	 dist(x, z) + dist(z, y) ≥ dist(x, y) (triangle inequality). 

Metrics and Riemannian metrics should not be confused. A metric is an 
abstraction of the notion of distance, whereas a Riemannian metric is an 
inner product on tangent spaces. There is, however, a link since any Rie­
mannian metric induces a distance, the Riemannian distance. 

Given a smooth scalar field f on a Riemannian manifold M, the gradient 
of f at x, denoted by grad f(x), is defined as the unique element of TxM
that satisfies 

〈grad f(x), ξ〉x = Df (x) [ξ] , ∀ξ ∈ TxM. (3.31) 

The coordinate expression of grad f is, in matrix notation, 

grad f(x̂) = G−1 Grad f̂(x̂),	 (3.32) x̂

where G is the matrix-valued function defined in (3.29) and Grad denotes 
the Euclidean gradient in Rd , 


∂1f̂(x̂)

 

.Grad f̂(x̂) :=  .. 
  . 

∂df̂(x̂) 

(Indeed, from (3.29) and (3.32), we have 〈grad f, ξ〉 = ξ̂TG(G−1 Grad f̂) = 
ξ̂T Grad f̂ = D f̂ [ξ̂] = Df [ξ] for any vector field ξ.) 

The gradient of a function has the following remarkable steepest-ascent 
properties (see Figure 3.9): 

•	 The direction of grad f(x) is the steepest-ascent direction of f at x: 

grad f(x) 
= arg max Df (x) [ξ] . ‖grad f(x)‖ ξ∈TxM:‖ξ‖=1 

•	 The norm of grad f(x) gives the steepest slope of f at x:

[ 

grad f(x) 
]


‖grad f(x)‖ = Df (x) ‖grad f(x)‖ . 

These two properties are important in the scope of optimization methods. 
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{ξ : Df (x) [ξ] = 1} {ξ : Df (x) [ξ] = −1} 

{ξ : ‖ξ‖ =


0x 

1} 

{ξ : Df (x) [ξ] = 0}
−grad f(x) 

Figure 3.9 Illustration of steepest descent. 

3.6.1 Riemannian submanifolds 

If a manifold M is endowed with a Riemannian metric, one would expect that 
manifolds generated from M (such as submanifolds and quotient manifolds) 
can inherit a Riemannian metric in a natural way. This section considers 
the case of embedded submanifolds; quotient manifolds are dealt with in the 
next section. 

Let M be an embedded submanifold of a Riemannian manifold M. Since 
every tangent space TxM can be regarded as a subspace of TxM, the Rie­
mannian metric g of M induces a Riemannian metric g on M according 
to 

gx(ξ, ζ) = g (ξ, ζ), ξ, ζ ∈ TxM,x

where ξ and ζ on the right-hand side are viewed as elements of TxM. This 
turns M into a Riemannian manifold. Endowed with this Riemannian met­
ric, M is called a Riemannian submanifold of M. The orthogonal comple­
ment of TxM in TxM is called the normal space to M at x and is denoted 
by (TxM)⊥: 

(TxM)⊥ = {ξ ∈ TxM : gx(ξ, ζ) = 0 for all ζ ∈ TxM}. 
Any element ξ ∈ TxM can be uniquely decomposed into the sum of an 
element of TxM and an element of (TxM)⊥: 

ξ = Pxξ + P⊥ 
x ξ, 

where Px denotes the orthogonal projection onto TxM and P⊥ denotes the x 

orthogonal projection onto (TxM)⊥ . 

Example 3.6.1 Sphere 
On the unit sphere Sn−1 considered a Riemannian submanifold of Rn, the 

inner product inherited from the standard inner product on Rn is given by 

〈ξ, η〉x := ξT η. (3.33) 
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The normal space is 

(TxS
n−1)⊥ = {xα : α ∈ R}, 

and the projections are given by 

Pxξ = (I − xx T )ξ, P⊥ξ = xx T ξx 

for x ∈ Sn−1 . 

Example 3.6.2 Orthogonal Stiefel manifold 
Recall that the tangent space to the orthogonal Stiefel manifold St(p, n) is 

TX St(p, n) = {XΩ + X⊥K : ΩT = −Ω, K ∈ R(n−p)×p}. 
The Riemannian metric inherited from the embedding space Rn×p is 

〈ξ, η〉X := tr(ξT η). (3.34) 

If ξ = XΩξ + X⊥Kξ and η = XΩη + X⊥Kη, then 〈ξ, η〉X = tr(ΩT Ωη +ξ 

Kξ
TKη). In view of the identity tr(ST Ω) = 0 for all S ∈ Ssym(p), Ω ∈ 
Sskew(p), the normal space is 

(TX St(p, n))⊥ = {XS : S ∈ Ssym(p)}. 
The projections are given by 

PXξ = (I − XXT )ξ + X skew(XT ξ), (3.35) 

P⊥ = X sym(XT ξ), (3.36) Xξ 

where sym(A) := 1
2 (A + AT ) and skew(A) := 1

2 (A − AT ) denote the com­
ponents of the decomposition of A into the sum of a symmetric term and a 
skew-symmetric term. 

Let f be a cost function defined on a Riemannian manifold M and let f 
denote the restriction of f to a Riemannian submanifold M. The gradient 
of f is equal to the projection of the gradient of f onto TxM: 

grad f(x) = Px grad f(x). (3.37) 

Indeed, Px grad f(x) belongs to TxM and (3.31) is satisfied since, for all 
ζ ∈ TxM, we have 〈Px grad f(x), ζ〉 = 〈grad f(x) − P⊥ grad f(x), ζ〉 = x 

〈grad f(x), ζ〉 = Df (x) [ζ] = Df (x) [ζ]. 

3.6.2 Riemannian quotient manifolds 

We now consider the case of a quotient manifold M = M/ ∼, where the 
structure space M is endowed with a Riemannian metric g. The horizontal 
space Hx at x ∈ M is canonically chosen as the orthogonal complement in 
TxM of the vertical space Vx = Txπ

−1(x), namely, 

Hx := (TxVx)⊥ = {ηx ∈ TxM : g(χx, ηx) = 0 for all χx ∈ Vx}. 
Recall that the horizontal lift at x ∈ π−1(x) of a tangent vector ξx ∈ TxM

is the unique tangent vector ξx ∈ Hx that satisfies Dπ(x)[ξx]. If, for every 

© Copyright, Princeton University Press. No part of this book may be 
distributed, posted, or reproduced in any form by digital or mechanical 
means without prior written permission of the publisher. 

For general queries, contact webmaster@press.princeton.edu



00˙AMS September 23, 2007

49 MATRIX MANIFOLDS: FIRST-ORDER GEOMETRY 

x ∈M and every ξx, ζx ∈ TxM, the expression g (ξ , ζ ) does not depend x x x

on x ∈ π−1(x), then 

gx(ξx, ζx) := gx(ξx, ζx) (3.38) 

defines a Riemannian metric on M. Endowed with this Riemannian met­
ric, M is called a Riemannian quotient manifold of M, and the natural 
projection π : M → M is a Riemannian submersion. (In other words, a 
Riemannian submersion is a submersion of Riemannian manifolds such that 
Dπ preserves inner products of vectors normal to fibers.) 

Riemannian quotient manifolds are interesting because several differential 
objects on the quotient manifold can be represented by corresponding objects 
in the structure space in a natural manner (see in particular Section 5.3.4). 
Notably, if f is a function on M that induces a function f on M, then one 
has 

grad fx = grad f(x). (3.39) 

Note that grad f(x) belongs to the horizontal space: since f is constant on 
each equivalence class, it follows that gx(grad f(x), ξ) ≡ Df (x) [ξ] = 0 for 
all vertical vectors ξ, hence grad f(x) is orthogonal to the vertical space. 

We use the notation Phξx and Pvξx for the projection of ξx ∈ TxM onto x x

Hx and Vx. 

Example 3.6.3 Projective space 
On the projective space RP

n−1, the definition 

1 T 〈ξ, η〉xR := 
xTx

ξ ηx x 

turns the canonical projection π : R∗ 
n RP

n−1 into a Riemannian submer­→
sion. 

Example 3.6.4 Grassmann manifolds 
We show that the Grassmann manifold Grass(p, n) = Rn

∗
×p/GLp admits 

a structure of a Riemannian quotient manifold when Rn
∗
×p is endowed with 

the Riemannian metric 

gY (Z1, Z2) = tr 
(
(Y TY )−1Z1 

TZ2

) 
. 

The vertical space at Y is by definition the tangent space to the equivalence 
class π−1(π(Y )) = {YM : M ∈ Rp

∗
×p}, which yields 

VY = {YM : M ∈ Rp×p}. 
The horizontal space at Y is then defined as the orthogonal complement of 
the vertical space with respect to the metric g. This yields 

HY = {Z ∈ Rn×p : Y TZ = 0}, (3.40) 

and the orthogonal projection onto the horizontal space is given by 

Ph
Y Z = (I − Y (Y TY )−1Y T )Z. (3.41) 
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W GLp 

W SW 

0 

Y 

σW (span(Y )) 

ξ ⋄W 

Y GLp 

ξ ⋄W M 

W M 

Figure 3.10 Grass(p, n) is shown as the quotient R
n
∗
×p/GLp for the case p = 1, n = 

2. Each point, the origin excepted, is an element of Rn
∗
×p = R2 −{0}. 

Each line is an equivalence class of elements of Rn
∗
×p that have the 

same span. So each line through the origin corresponds to an element 
of Grass(p, n). The affine subspace SW is an affine cross section as 
defined in (3.43). The relation (3.42) satisfied by the horizontal lift ξ of 
a tangent vector ξ ∈ TW Grass(p, n) is also illustrated. This figure can 
help to provide insight into the general case, however, one nonetheless 
has to be careful when drawing conclusions from it. For example, in 
general there does not exist a submanifold of Rn×p that is orthogonal 
to the fibers Y GLp at each point, although it is obviously the case for 
p = 1 (any centered sphere in Rn will do). 

Given ξ ∈ Tspan(Y ) Grass(p, n), there exists a unique horizontal lift ξY ∈ 
TY R

n
∗
×p satisfying 

Dπ(Y )[ξY ] = ξ. 

In order to show that Grass(p, n) admits a structure of a Riemannian quo­
tient manifold of (Rn

∗
×p , g), we have to show that 

g(ξY M , ζY M ) = g(ξY , ζY ) 

for all M ∈ Rp
∗
×p. This relies on the following result. 

Proposition 3.6.1 Given Y ∈ Rn
∗
×p and ξ ∈ Tspan(Y ) Grass(p, n), we have 

ξY M = ξY · M (3.42) 

for all M ∈ R
p
∗
×p, where the center dot (usually omitted) denotes matrix 

multiplication. 

Proof. Let W ∈ Rn
∗
×p. Let UW = {span(Y ) : W TY invertible}. Notice that 

UW is the set of all the p-dimensional subspaces Y of Rn that do not contain 
any direction orthogonal to span(W ). Consider the mapping 

σW : UW → R∗ 
n×p : span(Y ) 7→ Y (W TY )−1W TW ; 
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see Figure 3.10. One has π(σW (Y)) = span(σW (Y)) = Y for all Y ∈ UW ; 
i.e., σW is a right inverse of π. Consequently, Dπ(σW (Y)) DσW (Y) = id.◦
Moreover, the range of σW is 

SW := {Y ∈ R∗ 
n×p : W T (Y − W ) = 0}, (3.43) 

from which it follows that the range of DσW (Y) = {Z ∈ Rn×p : W TZ = 
0} = HW . In conclusion, 

DσW (W)[ξ] = ξW . 

Now, σWM (Y) = σW (Y)M for all M ∈ Rp
∗
×p and all Y ∈ UW . It follows 

that 

ξWM = DσWM (W)[ξ] = D(σW M)(W)[ξ] = DσW (W)[ξ] M = ξW · M, · · 
where the center dot denotes the matrix multiplication. � 

Using this result, we have 

gY M (ξY M , ζY M ) = gY M (ξY M, ζY M) 

= tr 
(
((YM)TYM)−1(ξY M)T (ζY M)

) 

T
(
M−1(Y TY )−1M−TMT ξY= tr ζY M

T 
= tr 

(
(Y TY )−1ξY ζY 

) 

= gY (ξY , ζY ). 

This shows that Grass(p, n), endowed with the Riemannian metric 

gspan(Y )(ξ, ζ) := gY (ξY , ζY ), (3.44) 

is a Riemannian quotient manifold of (Rn
∗
×p , g). In other words, the canon­

ical projection π : Rn
∗
×p Grass(p, n) is a Riemannian submersion from →

(Rn
∗
×p , g) to (Grass(p, n), g). 

3.7 NOTES AND REFERENCES 

Differential geometry textbooks that we have referred to when writing 
this book include Abraham et al. [AMR88], Boothby [Boo75], Brickell 
and Clark [BC70], do Carmo [dC92], Kobayashi and Nomizu [KN63], 
O’Neill [O’N83], Sakai [Sak96], and Warner [War83]. Some material was 
also borrowed from the course notes of M. De Wilde at the University of 
Liège [DW92]. Do Carmo [dC92] is well suited for engineers, as it does not 
assume any background in abstract topology; the prequel [dC76] on the 
differential geometry of curves and surfaces makes the introduction even 
smoother. Abraham et al. [AMR88] and Brickell and Clark [BC70] cover 
global analysis questions (submanifolds, quotient manifolds) at an introduc­
tory level. Brickell and Clark [BC70] has a detailed treatment of the topology 
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of manifolds. O’Neill [O’N83] is an excellent reference for Riemannian con­
nections of submanifolds and quotient manifolds (Riemannian submersions). 
Boothby [Boo75] provides an excellent introduction to differential geometry 
with a perspective on Lie theory, and Warner [War83] covers more advanced 
material in this direction. Other references on differential geometry include 
the classic works of Kobayashi and Nomizu [KN63], Helgason [Hel78], and 
Spivak [Spi70]. We also mention Darling [Dar94], which introduces abstract 
manifold theory only after covering Euclidean spaces and their submanifolds. 

Several equivalent ways of defining a manifold can be found in the lit­
erature. The definition in do Carmo [dC92] is based on local parameter­
izations. O’Neill [O’N83, p. 22] points out that for a Hausdorff manifold 
(with countably many components), being second-countable is equivalent 
to being paracompact. (In abstract topology, a space X is paracompact if 
every open covering of X has a locally finite open refinement that covers 
X.) A differentiable manifold M admits a partition of unity if and only 
if it is paracompact [BC70, Th. 3.4.4]. The material on the existence and 
uniqueness of atlases has come chiefly from Brickell and Clark [BC70]. A 
function with constant rank on its domain is called a subimmersion in most 
textbooks. The terms “canonical immersion” and “canonical submersion” 
have been borrowed from Guillemin and Pollack [GP74, p. 14]. The mani­
fold topology of an immersed submanifold is always finer than its topology 
as a subspace [BC70], but they need not be the same topology. (When they 
are, the submanifold is called embedded.) Examples of subsets of a mani­
fold that do not admit a submanifold structure, and examples of immersed 
submanifolds that are not embedded, can be found in most textbooks on 
differential geometry, such as do Carmo [dC92]. Proposition 3.3.1, on the 
uniqueness of embedded submanifold structures, is proven in Brickell and 
Clark [BC70] and O’Neill [O’N83]. Proposition 3.3.3 can be found in sev­
eral textbooks without the condition d1 > d2. In the case where d1 = d2, 
F −1(y) is a discrete set of points [BC70, Prop. 6.2.1]. In several references, 
embedded submanifolds are called regular submanifolds or simply submani­
folds. Proposition 3.3.2, on coordinate slices, is sometimes used to define the 
notion of an embedded submanifold, such as in Abraham et al. [AMR88]. 
Our definition of a regular equivalence relation follows that of Abraham et 
al. [AMR88]. The characterization of quotient manifolds in Proposition 3.4.2 
can be found in Abraham et al. [AMR88, p. 208]. A shorter proof of Proposi­
tion 3.4.6 (showing that Rn

∗
×p/GLp admits a structure of quotient manifold, 

the Grassmann manifold) can be given using the theory of homogeneous 
spaces, see Boothby [Boo75] or Warner [War83]. 

Most textbooks define tangent vectors as derivations. Do Carmo [dC92] 
introduces tangent vectors to curves, as in Section 3.5.1. O’Neill [O’N83] 
proposes both definitions. A tangent vector at a point x of a manifold can 
also be defined as an equivalence class of all curves that realize the same 
derivation: γ1 ∼ γ2 if and only if, in a chart (U,ϕ) around x = γ1(0) = γ2(0), 
we have (ϕ γ1) ′ (0) = (ϕ γ2) ′ (0). This notion does not depend on the chart ◦ ◦ 
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since, if (V, ψ) is another chart around x, then 

(ψ γ) ′ (0) = (ψ ϕ−1) ′ (ϕ(m)) (ϕ γ) ′ (0).◦ ◦ · ◦ 
This is the approach taken, for example, by Gallot et al. [GHL90]. 

The notation DF (x) [ξ] is not standard. Most textbooks use dFxξ or F∗xξ. 
Our notation is slightly less compact but makes it easier to distinguish the 
three elements F , x, and ξ of the expression and has proved more flexible 
when undertaking explicit computations involving matrix manifolds. 

An alternative way to define smoothness of a vector field is to require 
that the function ξf be smooth for every f ∈ F(M); see O’Neill [O’N83]. 
In the parlance of abstract algebra, the set F(M) of all smooth real-valued 
functions on M, endowed with the usual operations of addition and multipli­
cation, is a commutative ring, and the set X(M) of vector fields is a module 
over F(M) [O’N83]. Formula (3.26) for the tangent space to the orthogonal 
group can also be obtained by treating On as a Lie group: the operation of 
left multiplication by U , LU : X 7→ UX, sends the neutral element I to U , 
and the differential of LU at I sends TIOn = o(n) = Sskew(n) to USskew(n); 
see, e.g., Boothby [Boo75] or Warner [War83]. For a proof that the Rie­
mannian distance satisfies the three axioms of a metric, see O’Neill [O’N83, 
Prop. 5.18]. The axiom that fails to hold in general for non-Hausdorff man­
ifolds is that dist(x, y) = 0 if and only if x = y. An example can be con­
structed from the material in Section 4.3.2. Riemannian submersions are 
covered in some detail in Cheeger and Ebin [CE75], do Carmo [dC92], Klin­
genberg [Kli82], O’Neill [O’N83], and Sakai [Sak96]. The term “Riemannian 
quotient manifold” is new. 

The Riemannian metric given in (3.44) is the essentially unique rotation-
invariant Riemannian metric on the Grassmann manifold [Lei61, AMS04]. 
More information on Grassmann manifolds can be found in Ferrer et 
al. [FGP94], Edelman et al. [EAS98], Absil et al. [AMS04], and references 
therein. 

In order to define the steepest-descent direction of a real-valued function 
f on a manifold M, it is enough to endow the tangent spaces to M with a 
norm. Under smoothness assumptions, this turns M into a Finsler manifold . 
Finsler manifolds have received little attention in the literature in comparison 
with the more restrictive notion of Riemannian manifolds. For recent work 
on Finsler manifolds, see Bao et al. [BCS00]. 
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